Upload folder using huggingface_hub
Browse files
app.py
CHANGED
@@ -19,11 +19,12 @@ title = ("# [Stable Video Diffusion](ttps://huggingface.co/stabilityai/stable-vi
|
|
19 |
|
20 |
|
21 |
@spaces.GPU(duration=120)
|
22 |
-
def infer(init_image, motion_bucket_id, noise_aug_strength, decode_chunk_size, fps, seed):
|
23 |
base_count = len(glob(os.path.join(tmp_output_dir, "*.mp4")))
|
24 |
video_path = os.path.join(tmp_output_dir, f"{base_count:06d}.mp4")
|
25 |
frames = model.image2video(
|
26 |
[init_image],
|
|
|
27 |
motion_bucket_id=motion_bucket_id,
|
28 |
noise_aug_strength=noise_aug_strength,
|
29 |
decode_chunk_size=decode_chunk_size,
|
@@ -43,19 +44,15 @@ with gr.Blocks() as demo:
|
|
43 |
video = gr.Video()
|
44 |
with gr.Accordion("Advanced options", open=False):
|
45 |
seed = gr.Slider(label="Seed", minimum=0, maximum=1_000_000, step=1, value=0)
|
|
|
46 |
motion_bucket_id = gr.Slider(label="Motion bucket id", minimum=1, maximum=255, step=1, value=127)
|
47 |
-
noise_aug_strength = gr.Slider(label="Noise
|
48 |
fps = gr.Slider(label="Frames per second", minimum=5, maximum=30, step=1, value=6)
|
49 |
-
decode_chunk_size = gr.Slider(label="
|
50 |
run_button.click(
|
51 |
fn=infer,
|
52 |
-
inputs=[image, motion_bucket_id, noise_aug_strength, decode_chunk_size, fps, seed],
|
53 |
-
outputs=[video]
|
54 |
-
)
|
55 |
-
gr.Examples(
|
56 |
-
fn=infer,
|
57 |
-
examples=examples,
|
58 |
-
inputs=image,
|
59 |
outputs=[video]
|
60 |
)
|
|
|
61 |
demo.launch()
|
|
|
19 |
|
20 |
|
21 |
@spaces.GPU(duration=120)
|
22 |
+
def infer(init_image, num_frames, motion_bucket_id, noise_aug_strength, decode_chunk_size, fps, seed):
|
23 |
base_count = len(glob(os.path.join(tmp_output_dir, "*.mp4")))
|
24 |
video_path = os.path.join(tmp_output_dir, f"{base_count:06d}.mp4")
|
25 |
frames = model.image2video(
|
26 |
[init_image],
|
27 |
+
num_frames=num_frames,
|
28 |
motion_bucket_id=motion_bucket_id,
|
29 |
noise_aug_strength=noise_aug_strength,
|
30 |
decode_chunk_size=decode_chunk_size,
|
|
|
44 |
video = gr.Video()
|
45 |
with gr.Accordion("Advanced options", open=False):
|
46 |
seed = gr.Slider(label="Seed", minimum=0, maximum=1_000_000, step=1, value=0)
|
47 |
+
num_frames = gr.Slider(label="Number of frames", minimum=1, maximum=100, step=1, value=25)
|
48 |
motion_bucket_id = gr.Slider(label="Motion bucket id", minimum=1, maximum=255, step=1, value=127)
|
49 |
+
noise_aug_strength = gr.Slider(label="Noise strength", minimum=0, maximum=1, step=0.01, value=0.02)
|
50 |
fps = gr.Slider(label="Frames per second", minimum=5, maximum=30, step=1, value=6)
|
51 |
+
decode_chunk_size = gr.Slider(label="Decode chunk size", minimum=1, maximum=10, step=1, value=2)
|
52 |
run_button.click(
|
53 |
fn=infer,
|
54 |
+
inputs=[image, num_frames, motion_bucket_id, noise_aug_strength, decode_chunk_size, fps, seed],
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
outputs=[video]
|
56 |
)
|
57 |
+
gr.Examples(fn=infer, examples=examples, inputs=image, outputs=[video])
|
58 |
demo.launch()
|