|
import gradio as gr |
|
import os |
|
from glob import glob |
|
from diffusers.utils import load_image |
|
import spaces |
|
from panna import SVD |
|
|
|
|
|
model = SVD() |
|
example_files = [] |
|
root_url = "https://huggingface.co/spaces/multimodalart/stable-video-diffusion/resolve/main/images" |
|
examples = ["disaster_meme.png", "distracted_meme.png", "hide_meme.png", "success_meme.png", "willy_meme.png", "wink_meme.png"] |
|
for example in examples: |
|
load_image(f"{root_url}/{example}").save(example) |
|
tmp_output_dir = "outputs" |
|
os.makedirs(tmp_output_dir, exist_ok=True) |
|
title = ("# [Stable Video Diffusion](ttps://huggingface.co/stabilityai/stable-video-diffusion-img2vid-xt)\n" |
|
"The demo is part of [panna](https://github.com/asahi417/panna) project.") |
|
|
|
|
|
@spaces.GPU(duration=120) |
|
def infer(init_image, num_frames, motion_bucket_id, noise_aug_strength, decode_chunk_size, fps, seed): |
|
base_count = len(glob(os.path.join(tmp_output_dir, "*.mp4"))) |
|
video_path = os.path.join(tmp_output_dir, f"{base_count:06d}.mp4") |
|
frames = model.image2video( |
|
[init_image], |
|
num_frames=num_frames, |
|
motion_bucket_id=motion_bucket_id, |
|
noise_aug_strength=noise_aug_strength, |
|
decode_chunk_size=decode_chunk_size, |
|
fps=fps, |
|
seed=seed |
|
) |
|
model.export(frames[0], video_path, fps) |
|
return video_path |
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown(title) |
|
with gr.Row(): |
|
with gr.Column(): |
|
image = gr.Image(label="Upload your image", type="pil") |
|
run_button = gr.Button("Generate") |
|
video = gr.Video() |
|
with gr.Accordion("Advanced options", open=False): |
|
seed = gr.Slider(label="Seed", minimum=0, maximum=1_000_000, step=1, value=0) |
|
num_frames = gr.Slider(label="Number of frames", minimum=1, maximum=100, step=1, value=25) |
|
motion_bucket_id = gr.Slider(label="Motion bucket id", minimum=1, maximum=255, step=1, value=127) |
|
noise_aug_strength = gr.Slider(label="Noise strength", minimum=0, maximum=1, step=0.01, value=0.02) |
|
fps = gr.Slider(label="Frames per second", minimum=5, maximum=30, step=1, value=7) |
|
decode_chunk_size = gr.Slider(label="Decode chunk size", minimum=1, maximum=25, step=1, value=7) |
|
run_button.click( |
|
fn=infer, |
|
inputs=[image, num_frames, motion_bucket_id, noise_aug_strength, decode_chunk_size, fps, seed], |
|
outputs=[video] |
|
) |
|
gr.Examples(examples=examples, inputs=image) |
|
demo.launch(server_name="0.0.0.0") |
|
|