Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import spaces | |
from panna import SD3 | |
model = SD3("stabilityai/stable-diffusion-3-medium-diffusers") | |
title = "# [Stable Diffusion 3 Medium](https://huggingface.co/stabilityai/stable-diffusion-3-medium)" | |
examples = [ | |
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", | |
"A female model, high quality, fashion, Paris, Vogue, Maison Margiela, 8k", | |
] | |
css = """ | |
#col-container { | |
margin: 0 auto; | |
max-width: 580px; | |
} | |
""" | |
def infer(prompt, negative_prompt, seed, width, height, guidance_scale, num_inference_steps): | |
return model.text2image( | |
prompt=[prompt], | |
negative_prompt=[negative_prompt], | |
guidance_scale=guidance_scale, | |
num_inference_steps=num_inference_steps, | |
width=width, | |
height=height, | |
seed=seed | |
)[0] | |
with gr.Blocks(css=css) as demo: | |
with gr.Column(elem_id="col-container"): | |
gr.Markdown(title) | |
with gr.Row(): | |
prompt = gr.Text(label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False) | |
run_button = gr.Button("Run", scale=0) | |
result = gr.Image(label="Result", show_label=False) | |
with gr.Accordion("Advanced Settings", open=False): | |
negative_prompt = gr.Text(label="Negative Prompt", max_lines=1, placeholder="Enter a negative prompt") | |
seed = gr.Slider(label="Seed", minimum=0, maximum=1_000_000, step=1, value=0) | |
with gr.Row(): | |
width = gr.Slider(label="Width", minimum=256, maximum=1344, step=64, value=1024) | |
height = gr.Slider(label="Height", minimum=256, maximum=1344, step=64, value=1024) | |
with gr.Row(): | |
guidance_scale = gr.Slider(label="Guidance scale", minimum=0.0, maximum=10.0, step=0.1, value=7.5) | |
num_inference_steps = gr.Slider(label="Inference steps", minimum=1, maximum=50, step=1, value=50) | |
gr.Examples(examples=examples, inputs=[prompt]) | |
gr.on( | |
triggers=[run_button.click, prompt.submit, negative_prompt.submit], | |
fn=infer, | |
inputs=[prompt, negative_prompt, seed, width, height, guidance_scale, num_inference_steps], | |
outputs=[result] | |
) | |
demo.launch() | |