Spaces:
Running
on
Zero
Running
on
Zero
Upload folder using huggingface_hub
Browse files
app.py
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
import torch
|
2 |
import gradio as gr
|
3 |
from clip_interrogator import Config, Interrogator
|
|
|
4 |
|
5 |
|
6 |
config = Config()
|
@@ -10,9 +11,15 @@ config.chunk_size = 2048
|
|
10 |
config.flavor_intermediate_count = 512
|
11 |
config.blip_num_beams = 64
|
12 |
ci = Interrogator(config)
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
-
|
15 |
-
def
|
16 |
image = image.convert('RGB')
|
17 |
if mode == 'best':
|
18 |
prompt_result = ci.interrogate(image, max_flavors=int(best_max_flavors))
|
@@ -23,17 +30,17 @@ def inference(image, mode, best_max_flavors):
|
|
23 |
return prompt_result
|
24 |
|
25 |
|
26 |
-
with gr.Blocks() as demo:
|
27 |
-
with gr.Column():
|
28 |
gr.Markdown("# CLIP Interrogator")
|
29 |
input_image = gr.Image(type='pil', elem_id="input-img")
|
30 |
with gr.Row():
|
31 |
mode_input = gr.Radio(['best', 'classic', 'fast'], label='Select mode', value='best')
|
32 |
flavor_input = gr.Slider(minimum=2, maximum=48, step=2, value=32, label='best mode max flavors')
|
33 |
-
|
34 |
output_text = gr.Textbox(label="Description Output")
|
35 |
-
|
36 |
-
fn=
|
37 |
inputs=[input_image, mode_input, flavor_input],
|
38 |
outputs=[output_text],
|
39 |
concurrency_limit=10
|
|
|
1 |
import torch
|
2 |
import gradio as gr
|
3 |
from clip_interrogator import Config, Interrogator
|
4 |
+
import spaces
|
5 |
|
6 |
|
7 |
config = Config()
|
|
|
11 |
config.flavor_intermediate_count = 512
|
12 |
config.blip_num_beams = 64
|
13 |
ci = Interrogator(config)
|
14 |
+
css = """
|
15 |
+
#col-container {
|
16 |
+
margin: 0 auto;
|
17 |
+
max-width: 580px;
|
18 |
+
}
|
19 |
+
"""
|
20 |
|
21 |
+
@spaces.GPU
|
22 |
+
def infer(image, mode, best_max_flavors):
|
23 |
image = image.convert('RGB')
|
24 |
if mode == 'best':
|
25 |
prompt_result = ci.interrogate(image, max_flavors=int(best_max_flavors))
|
|
|
30 |
return prompt_result
|
31 |
|
32 |
|
33 |
+
with gr.Blocks(css=css) as demo:
|
34 |
+
with gr.Column(elem_id="col-container"):
|
35 |
gr.Markdown("# CLIP Interrogator")
|
36 |
input_image = gr.Image(type='pil', elem_id="input-img")
|
37 |
with gr.Row():
|
38 |
mode_input = gr.Radio(['best', 'classic', 'fast'], label='Select mode', value='best')
|
39 |
flavor_input = gr.Slider(minimum=2, maximum=48, step=2, value=32, label='best mode max flavors')
|
40 |
+
run_button = gr.Button("Submit")
|
41 |
output_text = gr.Textbox(label="Description Output")
|
42 |
+
run_button.click(
|
43 |
+
fn=infer,
|
44 |
inputs=[input_image, mode_input, flavor_input],
|
45 |
outputs=[output_text],
|
46 |
concurrency_limit=10
|