Image-Caption / app.py
aryan083's picture
Update app.py
62d1efe verified
from transformers import VisionEncoderDecoderModel, ViTImageProcessor, AutoTokenizer
import torch
from PIL import Image
import gradio as gr
model_name = "aryan083/vit-gpt2-image-captioning"
model = VisionEncoderDecoderModel.from_pretrained(model_name)
feature_extractor = ViTImageProcessor.from_pretrained(model_name) # Changed from ViTFeatureExtractor to ViTImageProcessor
tokenizer = AutoTokenizer.from_pretrained(model_name)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model.to(device)
def predict_caption(image):
if image is None:
return None
images = []
images.append(image)
pixel_values = feature_extractor(images=images, return_tensors="pt").pixel_values
pixel_values = pixel_values.to(device)
output_ids = model.generate(
pixel_values,
do_sample=True,
max_length=16,
num_beams=4,
temperature=0.7
)
preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
return preds[0].strip()
# Create Gradio interface
iface = gr.Interface(
fn=predict_caption,
inputs=gr.Image(type="pil"),
outputs=gr.Textbox(label="Generated Caption"),
title="Image Captioning",
description="Upload an image and get its description generated using ViT-GPT2",
# examples=[["assets/example1.jpg"]] # Add example images if you have any
)
iface.launch()