Spaces:
Sleeping
Sleeping
from transformers import VisionEncoderDecoderModel, ViTImageProcessor, AutoTokenizer | |
import torch | |
from PIL import Image | |
import gradio as gr | |
model_name = "aryan083/vit-gpt2-image-captioning" | |
model = VisionEncoderDecoderModel.from_pretrained(model_name) | |
feature_extractor = ViTImageProcessor.from_pretrained(model_name) # Changed from ViTFeatureExtractor to ViTImageProcessor | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
model.to(device) | |
def predict_caption(image): | |
if image is None: | |
return None | |
images = [] | |
images.append(image) | |
pixel_values = feature_extractor(images=images, return_tensors="pt").pixel_values | |
pixel_values = pixel_values.to(device) | |
output_ids = model.generate( | |
pixel_values, | |
do_sample=True, | |
max_length=16, | |
num_beams=4, | |
temperature=0.7 | |
) | |
preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True) | |
return preds[0].strip() | |
# Create Gradio interface | |
iface = gr.Interface( | |
fn=predict_caption, | |
inputs=gr.Image(type="pil"), | |
outputs=gr.Textbox(label="Generated Caption"), | |
title="Image Captioning", | |
description="Upload an image and get its description generated using ViT-GPT2", | |
# examples=[["assets/example1.jpg"]] # Add example images if you have any | |
) | |
iface.launch() |