Rúben Almeida
Update version of requirements
3081464
raw
history blame
2.7 kB
import zipfile
from typing import Union
from awq import AutoAWQForCausalLM
from transformers import AutoTokenizer
from tempfile import NamedTemporaryFile
from contextlib import asynccontextmanager
from fastapi import FastAPI, HTTPException
from fastapi.responses import RedirectResponse, FileResponse
from .dto import AWQConvertionRequest, GGUFConvertionRequest, GPTQConvertionRequest
### FastAPI Initialization
@asynccontextmanager
async def lifespan(app:FastAPI):
yield
app = FastAPI(title="Huggingface Safetensor Model Converter to AWQ", version="0.1.0", lifespan=lifespan)
### -------
@app.get("/", include_in_schema=False)
def redirect_to_docs():
return RedirectResponse(url='/docs')
### FastAPI Endpoints
@app.post("/convert_awq", response_model=None)
def convert(request: AWQConvertionRequest)->Union[FileResponse, dict]:
try:
model = AutoAWQForCausalLM.from_pretrained(request.hf_model_name)
except TypeError as e:
raise HTTPException(status_code=400, detail=f"Is this model supported by AWQ Quantization? Check:https://github.com/mit-han-lab/llm-awq?tab=readme-ov-file {e}")
tokenizer = AutoTokenizer.from_pretrained(request.hf_tokenizer_name or request.hf_model_name, trust_remote_code=True)
model.quantize(tokenizer, quant_config=request.quantization_config.model_dump())
if request.hf_push_repo:
model.save_quantized(request.hf_push_repo)
tokenizer.save_pretrained(request.hf_push_repo)
return {
"status": "ok",
"message": f"Model saved to {request.hf_push_repo}",
}
# Return a zip file with the converted model
with NamedTemporaryFile(suffix=".zip", delete=False) as temp_zip:
zip_file_path = temp_zip.name
with zipfile.ZipFile(zip_file_path, 'w') as zipf:
# Save the model and tokenizer files to the zip
model.save_quantized(zipf)
tokenizer.save_pretrained(zipf)
return FileResponse(
zip_file_path,
media_type='application/zip',
filename=f"{request.hf_model_name}.zip"
)
raise HTTPException(status_code=500, detail="Failed to convert model")
@app.post("/convert_gpt_q", response_model=None)
def convert_gpt_q(request: GPTQConvertionRequest)->Union[FileResponse, dict]:
raise HTTPException(status_code=501, detail="Not implemented yet")
@app.post("/convert_gguf", response_model=None)
def convert_gguf(request: GGUFConvertionRequest)->Union[FileResponse, dict]:
raise HTTPException(status_code=501, detail="Not implemented yet")
@app.get("/health")
def read_root():
return {"status": "ok"}