|
import zipfile |
|
from typing import Union |
|
from awq import AutoAWQForCausalLM |
|
from transformers import AutoTokenizer |
|
from tempfile import NamedTemporaryFile |
|
from contextlib import asynccontextmanager |
|
from fastapi import FastAPI, HTTPException |
|
from fastapi.responses import RedirectResponse, FileResponse |
|
from .dto import AWQConvertionRequest, GGUFConvertionRequest, GPTQConvertionRequest |
|
|
|
|
|
@asynccontextmanager |
|
async def lifespan(app:FastAPI): |
|
yield |
|
|
|
app = FastAPI(title="Huggingface Safetensor Model Converter to AWQ", version="0.1.0", lifespan=lifespan) |
|
|
|
|
|
|
|
@app.get("/", include_in_schema=False) |
|
def redirect_to_docs(): |
|
return RedirectResponse(url='/docs') |
|
|
|
|
|
@app.post("/convert_awq", response_model=None) |
|
def convert(request: AWQConvertionRequest)->Union[FileResponse, dict]: |
|
|
|
try: |
|
model = AutoAWQForCausalLM.from_pretrained(request.hf_model_name) |
|
except TypeError as e: |
|
raise HTTPException(status_code=400, detail=f"Is this model supported by AWQ Quantization? Check:https://github.com/mit-han-lab/llm-awq?tab=readme-ov-file {e}") |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(request.hf_tokenizer_name or request.hf_model_name, trust_remote_code=True) |
|
|
|
model.quantize(tokenizer, quant_config=request.quantization_config.model_dump()) |
|
|
|
if request.hf_push_repo: |
|
model.save_quantized(request.hf_push_repo) |
|
tokenizer.save_pretrained(request.hf_push_repo) |
|
|
|
return { |
|
"status": "ok", |
|
"message": f"Model saved to {request.hf_push_repo}", |
|
} |
|
|
|
|
|
with NamedTemporaryFile(suffix=".zip", delete=False) as temp_zip: |
|
zip_file_path = temp_zip.name |
|
with zipfile.ZipFile(zip_file_path, 'w') as zipf: |
|
|
|
model.save_quantized(zipf) |
|
tokenizer.save_pretrained(zipf) |
|
|
|
return FileResponse( |
|
zip_file_path, |
|
media_type='application/zip', |
|
filename=f"{request.hf_model_name}.zip" |
|
) |
|
|
|
|
|
raise HTTPException(status_code=500, detail="Failed to convert model") |
|
|
|
@app.post("/convert_gpt_q", response_model=None) |
|
def convert_gpt_q(request: GPTQConvertionRequest)->Union[FileResponse, dict]: |
|
raise HTTPException(status_code=501, detail="Not implemented yet") |
|
|
|
@app.post("/convert_gguf", response_model=None) |
|
def convert_gguf(request: GGUFConvertionRequest)->Union[FileResponse, dict]: |
|
raise HTTPException(status_code=501, detail="Not implemented yet") |
|
|
|
@app.get("/health") |
|
def read_root(): |
|
return {"status": "ok"} |