qwen-vl / app.py
artificialguybr's picture
Update app.py
dc2ea44
raw
history blame
2.77 kB
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
from PIL import Image
import re # Importando o módulo de expressões regulares
import requests
from io import BytesIO
# Carregar o modelo Qwen-VL e o tokenizer
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen-VL-Chat-Int4", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-VL-Chat-Int4",load_in_4bit=True, device_map="auto", trust_remote_code=True).eval()
def generate_predictions(image_input, text_input):
# Inverter a imagem para corrigir o negativo
user_image_path = "/tmp/user_input_test_image.jpg"
Image.fromarray((255 - (image_input * 255).astype('uint8'))).save(user_image_path)
# Preparar as entradas
query = tokenizer.from_list_format([
{'image': user_image_path},
{'text': text_input},
])
inputs = tokenizer(query, return_tensors='pt')
inputs = inputs.to(model.device)
# Gerar a legenda
pred = model.generate(**inputs)
full_response = tokenizer.decode(pred.cpu()[0], skip_special_tokens=False)
# Remover o texto de input e outras partes indesejadas da resposta completa
frontend_response = re.sub(r'Picture \d+:|<.*?>|\/tmp\/.*\.jpg', '', full_response).replace(text_input, '').strip()
# Desenhar caixas delimitadoras, se houver
image_with_boxes = tokenizer.draw_bbox_on_latest_picture(full_response)
# Salvar e recarregar a imagem para garantir que seja uma imagem PIL
if image_with_boxes:
temp_path = "/tmp/image_with_boxes.jpg"
image_with_boxes.save(temp_path)
image_with_boxes = Image.open(temp_path)
return image_with_boxes, frontend_response # Retornando a resposta formatada para o frontend
# Criar interface Gradio
# Create Gradio interface
iface = gr.Interface(
fn=generate_predictions,
inputs=[
gr.inputs.Image(label="Image Input"),
gr.inputs.Textbox(default="Generate a caption for that image with grounding:", label="Prompt")
],
outputs=[
gr.outputs.Image(type='pil', label="Image"), # Explicitly set type to 'pil'
gr.outputs.Textbox(label="Generated")
],
title="Qwen-VL Demonstration",
description = """
## Qwen-VL: A Multimodal Large Vision Language Model by Alibaba Cloud
**Space by [@Artificialguybr](https://twitter.com/artificialguybr)**
### Key Features:
- **Strong Performance**: Surpasses existing LVLMs on multiple English benchmarks including Zero-shot Captioning and VQA.
- **Multi-lingual Support**: Supports English, Chinese, and multi-lingual conversation.
- **High Resolution**: Utilizes 448*448 resolution for fine-grained recognition and understanding.
""",
)
iface.launch()