File size: 6,593 Bytes
5038429
ccfc98d
5038429
 
32f13d0
5038429
 
e3457ad
 
 
5038429
a57bb7e
2c1bcda
9f9b102
 
 
2c1bcda
5038429
e3457ad
73f07d6
e3457ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5038429
e3457ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f49fe4
e3457ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a2adb84
 
8a73b38
 
a2adb84
 
 
 
 
 
 
 
 
 
 
8a73b38
a2adb84
e3457ad
112cb22
f02f6dd
112cb22
 
cd758c8
112cb22
22f6bcf
112cb22
e3457ad
 
 
 
112cb22
e3457ad
 
112cb22
 
 
e3457ad
 
 
 
 
a2adb84
 
e3457ad
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoConfig, TextStreamer
import torch
from PIL import Image
import re 
import requests
from io import BytesIO
import copy
import secrets
from pathlib import Path

tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen-VL-Chat-Int4", trust_remote_code=True)
config = AutoConfig.from_pretrained("Qwen/Qwen-VL-Chat-Int4", trust_remote_code=True, torch_dtype=torch.float16)
#config.quantization_config["use_exllama"] = True
config.quantization_config["disable_exllama"] = False
config.quantization_config["exllama_config"] = {"version":2}
model = AutoModelForCausalLM.from_config(config, trust_remote_code=True, torch_dtype=torch.float16)

BOX_TAG_PATTERN = r"<box>([\s\S]*?)</box>"
PUNCTUATION = "!?。"#$%&'()*+,-/:;<=>@[\]^_`{|}~⦅⦆「」、、〃》「」『』【】〔〕〖〗〘〙〚〛〜〝〞〟〰〾〿–—‘’‛“”„‟…‧﹏."

def _parse_text(text):
    lines = text.split("\n")
    lines = [line for line in lines if line != ""]
    count = 0
    for i, line in enumerate(lines):
        if "```" in line:
            count += 1
            items = line.split("`")
            if count % 2 == 1:
                lines[i] = f'<pre><code class="language-{items[-1]}">'
            else:
                lines[i] = f"<br></code></pre>"
        else:
            if i > 0:
                if count % 2 == 1:
                    line = line.replace("`", r"\`")
                    line = line.replace("<", "&lt;")
                    line = line.replace(">", "&gt;")
                    line = line.replace(" ", "&nbsp;")
                    line = line.replace("*", "&ast;")
                    line = line.replace("_", "&lowbar;")
                    line = line.replace("-", "&#45;")
                    line = line.replace(".", "&#46;")
                    line = line.replace("!", "&#33;")
                    line = line.replace("(", "&#40;")
                    line = line.replace(")", "&#41;")
                    line = line.replace("$", "&#36;")
                lines[i] = "<br>" + line
    text = "".join(lines)
    return text

def predict(_chatbot, task_history):
    chat_query = _chatbot[-1][0]
    query = task_history[-1][0]
    history_cp = copy.deepcopy(task_history)
    full_response = ""

    history_filter = []
    pic_idx = 1
    pre = ""
    for i, (q, a) in enumerate(history_cp):
        if isinstance(q, (tuple, list)):
            q = f'Picture {pic_idx}: <img>{q[0]}</img>'
            pre += q + '\n'
            pic_idx += 1
        else:
            pre += q
            history_filter.append((pre, a))
            pre = ""
    history, message = history_filter[:-1], history_filter[-1][0]
    response, history = model.chat(tokenizer, message, history=history)
    image = tokenizer.draw_bbox_on_latest_picture(response, history)
    if image is not None:
        temp_dir = secrets.token_hex(20)
        temp_dir = Path("/tmp") / temp_dir
        temp_dir.mkdir(exist_ok=True, parents=True)
        name = f"tmp{secrets.token_hex(5)}.jpg"
        filename = temp_dir / name
        image.save(str(filename))
        _chatbot[-1] = (_parse_text(chat_query), (str(filename),))
        chat_response = response.replace("<ref>", "")
        chat_response = chat_response.replace(r"</ref>", "")
        chat_response = re.sub(BOX_TAG_PATTERN, "", chat_response)
        if chat_response != "":
            _chatbot.append((None, chat_response))
    else:
        _chatbot[-1] = (_parse_text(chat_query), response)
    full_response = _parse_text(response)
    task_history[-1] = (query, full_response)
    return _chatbot
    
def add_text(history, task_history, text):
    task_text = text
    if len(text) >= 2 and text[-1] in PUNCTUATION and text[-2] not in PUNCTUATION:
        task_text = text[:-1]
    history = history + [(_parse_text(text), None)]
    task_history = task_history + [(task_text, None)]
    return history, task_history, ""

def add_file(history, task_history, file):
    history = history + [((file.name,), None)]
    task_history = task_history + [((file.name,), None)]
    return history, task_history

def reset_user_input():
    return gr.update(value="")

def reset_state(task_history):
    task_history.clear()
    return []
    
def regenerate(_chatbot, task_history):
    print("Regenerate clicked")
    print("Before:", task_history, _chatbot)
    if not task_history:
        return _chatbot
    item = task_history[-1]
    if item[1] is None:
        return _chatbot
    task_history[-1] = (item[0], None)
    chatbot_item = _chatbot.pop(-1)
    if chatbot_item[0] is None:
        _chatbot[-1] = (_chatbot[-1][0], None)
    else:
        _chatbot.append((chatbot_item[0], None))
    print("After:", task_history, _chatbot)
    return predict(_chatbot, task_history)

css = '''
.gradio-container{max-width:800px !important}
'''

with gr.Blocks(css=css) as demo:
    gr.Markdown("# Qwen-VL-Chat Bot")
    gr.Markdown("## Qwen-VL: A Multimodal Large Vision Language Model by Alibaba Cloud **Space by [@Artificialguybr](https://twitter.com/artificialguybr). Test the [QwenLLM-14B](https://huggingface.co/spaces/artificialguybr/qwen-14b-chat-demo) here for free!</center>")
    chatbot = gr.Chatbot(label='Qwen-VL-Chat', elem_classes="control-height", height=520)
    query = gr.Textbox(lines=2, label='Input')
    task_history = gr.State([])

    with gr.Row():
        addfile_btn = gr.UploadButton("📁 Upload", file_types=["image"])
        submit_btn = gr.Button("🚀 Submit")
        regen_btn = gr.Button("🤔️ Regenerate")
        empty_bin = gr.Button("🧹 Clear History")
    
    gr.Markdown("### Key Features:\n- **Strong Performance**: Surpasses existing LVLMs on multiple English benchmarks including Zero-shot Captioning and VQA.\n- **Multi-lingual Support**: Supports English, Chinese, and multi-lingual conversation.\n- **High Resolution**: Utilizes 448*448 resolution for fine-grained recognition and understanding.")
    submit_btn.click(add_text, [chatbot, task_history, query], [chatbot, task_history]).then(
        predict, [chatbot, task_history], [chatbot], show_progress=True
    )
    submit_btn.click(reset_user_input, [], [query])
    empty_bin.click(reset_state, [task_history], [chatbot], show_progress=True)
    regen_btn.click(regenerate, [chatbot, task_history], [chatbot], show_progress=True)
    addfile_btn.upload(add_file, [chatbot, task_history, addfile_btn], [chatbot, task_history], show_progress=True)

demo.launch()