Spaces:
Build error
Build error
File size: 6,593 Bytes
5038429 ccfc98d 5038429 32f13d0 5038429 e3457ad 5038429 a57bb7e 2c1bcda 9f9b102 2c1bcda 5038429 e3457ad 73f07d6 e3457ad 5038429 e3457ad 3f49fe4 e3457ad a2adb84 8a73b38 a2adb84 8a73b38 a2adb84 e3457ad 112cb22 f02f6dd 112cb22 cd758c8 112cb22 22f6bcf 112cb22 e3457ad 112cb22 e3457ad 112cb22 e3457ad a2adb84 e3457ad |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 |
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoConfig, TextStreamer
import torch
from PIL import Image
import re
import requests
from io import BytesIO
import copy
import secrets
from pathlib import Path
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen-VL-Chat-Int4", trust_remote_code=True)
config = AutoConfig.from_pretrained("Qwen/Qwen-VL-Chat-Int4", trust_remote_code=True, torch_dtype=torch.float16)
#config.quantization_config["use_exllama"] = True
config.quantization_config["disable_exllama"] = False
config.quantization_config["exllama_config"] = {"version":2}
model = AutoModelForCausalLM.from_config(config, trust_remote_code=True, torch_dtype=torch.float16)
BOX_TAG_PATTERN = r"<box>([\s\S]*?)</box>"
PUNCTUATION = "!?。"#$%&'()*+,-/:;<=>@[\]^_`{|}~⦅⦆「」、、〃》「」『』【】〔〕〖〗〘〙〚〛〜〝〞〟〰〾〿–—‘’‛“”„‟…‧﹏."
def _parse_text(text):
lines = text.split("\n")
lines = [line for line in lines if line != ""]
count = 0
for i, line in enumerate(lines):
if "```" in line:
count += 1
items = line.split("`")
if count % 2 == 1:
lines[i] = f'<pre><code class="language-{items[-1]}">'
else:
lines[i] = f"<br></code></pre>"
else:
if i > 0:
if count % 2 == 1:
line = line.replace("`", r"\`")
line = line.replace("<", "<")
line = line.replace(">", ">")
line = line.replace(" ", " ")
line = line.replace("*", "*")
line = line.replace("_", "_")
line = line.replace("-", "-")
line = line.replace(".", ".")
line = line.replace("!", "!")
line = line.replace("(", "(")
line = line.replace(")", ")")
line = line.replace("$", "$")
lines[i] = "<br>" + line
text = "".join(lines)
return text
def predict(_chatbot, task_history):
chat_query = _chatbot[-1][0]
query = task_history[-1][0]
history_cp = copy.deepcopy(task_history)
full_response = ""
history_filter = []
pic_idx = 1
pre = ""
for i, (q, a) in enumerate(history_cp):
if isinstance(q, (tuple, list)):
q = f'Picture {pic_idx}: <img>{q[0]}</img>'
pre += q + '\n'
pic_idx += 1
else:
pre += q
history_filter.append((pre, a))
pre = ""
history, message = history_filter[:-1], history_filter[-1][0]
response, history = model.chat(tokenizer, message, history=history)
image = tokenizer.draw_bbox_on_latest_picture(response, history)
if image is not None:
temp_dir = secrets.token_hex(20)
temp_dir = Path("/tmp") / temp_dir
temp_dir.mkdir(exist_ok=True, parents=True)
name = f"tmp{secrets.token_hex(5)}.jpg"
filename = temp_dir / name
image.save(str(filename))
_chatbot[-1] = (_parse_text(chat_query), (str(filename),))
chat_response = response.replace("<ref>", "")
chat_response = chat_response.replace(r"</ref>", "")
chat_response = re.sub(BOX_TAG_PATTERN, "", chat_response)
if chat_response != "":
_chatbot.append((None, chat_response))
else:
_chatbot[-1] = (_parse_text(chat_query), response)
full_response = _parse_text(response)
task_history[-1] = (query, full_response)
return _chatbot
def add_text(history, task_history, text):
task_text = text
if len(text) >= 2 and text[-1] in PUNCTUATION and text[-2] not in PUNCTUATION:
task_text = text[:-1]
history = history + [(_parse_text(text), None)]
task_history = task_history + [(task_text, None)]
return history, task_history, ""
def add_file(history, task_history, file):
history = history + [((file.name,), None)]
task_history = task_history + [((file.name,), None)]
return history, task_history
def reset_user_input():
return gr.update(value="")
def reset_state(task_history):
task_history.clear()
return []
def regenerate(_chatbot, task_history):
print("Regenerate clicked")
print("Before:", task_history, _chatbot)
if not task_history:
return _chatbot
item = task_history[-1]
if item[1] is None:
return _chatbot
task_history[-1] = (item[0], None)
chatbot_item = _chatbot.pop(-1)
if chatbot_item[0] is None:
_chatbot[-1] = (_chatbot[-1][0], None)
else:
_chatbot.append((chatbot_item[0], None))
print("After:", task_history, _chatbot)
return predict(_chatbot, task_history)
css = '''
.gradio-container{max-width:800px !important}
'''
with gr.Blocks(css=css) as demo:
gr.Markdown("# Qwen-VL-Chat Bot")
gr.Markdown("## Qwen-VL: A Multimodal Large Vision Language Model by Alibaba Cloud **Space by [@Artificialguybr](https://twitter.com/artificialguybr). Test the [QwenLLM-14B](https://huggingface.co/spaces/artificialguybr/qwen-14b-chat-demo) here for free!</center>")
chatbot = gr.Chatbot(label='Qwen-VL-Chat', elem_classes="control-height", height=520)
query = gr.Textbox(lines=2, label='Input')
task_history = gr.State([])
with gr.Row():
addfile_btn = gr.UploadButton("📁 Upload", file_types=["image"])
submit_btn = gr.Button("🚀 Submit")
regen_btn = gr.Button("🤔️ Regenerate")
empty_bin = gr.Button("🧹 Clear History")
gr.Markdown("### Key Features:\n- **Strong Performance**: Surpasses existing LVLMs on multiple English benchmarks including Zero-shot Captioning and VQA.\n- **Multi-lingual Support**: Supports English, Chinese, and multi-lingual conversation.\n- **High Resolution**: Utilizes 448*448 resolution for fine-grained recognition and understanding.")
submit_btn.click(add_text, [chatbot, task_history, query], [chatbot, task_history]).then(
predict, [chatbot, task_history], [chatbot], show_progress=True
)
submit_btn.click(reset_user_input, [], [query])
empty_bin.click(reset_state, [task_history], [chatbot], show_progress=True)
regen_btn.click(regenerate, [chatbot, task_history], [chatbot], show_progress=True)
addfile_btn.upload(add_file, [chatbot, task_history, addfile_btn], [chatbot, task_history], show_progress=True)
demo.launch() |