File size: 1,404 Bytes
8ea927a
 
410031a
 
8ea927a
410031a
8ea927a
410031a
77f6b05
b31a1e4
 
 
 
 
 
 
77f6b05
8ea927a
77f6b05
 
8ea927a
77f6b05
410031a
77f6b05
410031a
77f6b05
410031a
 
77f6b05
410031a
 
 
77f6b05
8ea927a
 
77f6b05
410031a
572ad52
 
77f6b05
572ad52
410031a
8ea927a
 
410031a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import gradio as gr
import openai
import json
from graphviz import Digraph

def generate_knowledge_graph(api_key, user_input):
    openai.api_key = api_key

    # Chamar a API da OpenAI
    completion = openai.ChatCompletion.create(
        model="gpt-3.5-turbo-16k",
        messages=[
            {
                "role": "user",
                "content": f"Help me understand following by describing as a detailed knowledge graph: {user_input}",
            }
        ]
    )
    response_data = completion.choices[0].message.to_dict()
    response_data = json.loads(response_data['content'])

    # Visualizar o conhecimento usando Graphviz
    dot = Digraph(comment="Knowledge Graph")
    for node in response_data.get("nodes", []):
        dot.node(node["id"], f"{node['label']} ({node['type']})")
    for edge in response_data.get("edges", []):
        dot.edge(edge["from"], edge["to"], label=edge["relationship"])

    # Renderizar para o formato PNG
    dot.format = "png"
    dot.render(filename="knowledge_graph", cleanup=True)

    return "knowledge_graph.png"

iface = gr.Interface(
    fn=generate_knowledge_graph, 
    inputs=[
        gr.components.Textbox(label="OpenAI API Key", type="password"),
        gr.components.Textbox(label="User Input for Graph")
    ], 
    outputs=gr.components.Image(type="filepath", label="Generated Knowledge Graph"),
    live=False
)

iface.launch()