artificialguybr's picture
Update app.py
b1b4f10 verified
raw
history blame
3.74 kB
import gradio as gr
import json
import logging
import torch
from PIL import Image
from diffusers import DiffusionPipeline, EulerDiscreteScheduler, DPMSolverMultistepScheduler
import spaces
# Load LoRAs from JSON file
with open('loras.json', 'r') as f:
loras = json.load(f)
# Initialize the base model
base_model = "stabilityai/stable-diffusion-xl-base-1.0"
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=torch.float16)
pipe.to("cuda")
def update_selection(evt: gr.SelectData):
selected_lora = loras[evt.index]
new_placeholder = f"Type a prompt for {selected_lora['title']}"
lora_repo = selected_lora["repo"]
updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo}) ✨"
return (
gr.update(placeholder=new_placeholder),
updated_text,
evt.index
)
@spaces.GPU
def run_lora(prompt, negative_prompt, cfg_scale, steps, selected_index, scheduler):
if selected_index is None:
raise gr.Error("You must select a LoRA before proceeding.")
selected_lora = loras[selected_index]
lora_path = selected_lora["repo"]
trigger_word = selected_lora["trigger_word"]
# Load LoRA weights
pipe.load_lora_weights(lora_path)
# Set scheduler
if scheduler == "Euler":
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config)
elif scheduler == "DPM++ 2M":
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
# Generate image
image = pipe(
prompt=f"{prompt} {trigger_word}",
negative_prompt=negative_prompt,
num_inference_steps=steps,
guidance_scale=cfg_scale,
).images[0]
# Unload LoRA weights
pipe.unload_lora_weights()
return image
with gr.Blocks(css="custom.css") as app:
gr.Markdown("# artificialguybr LoRA portfolio")
gr.Markdown(
"### This is my portfolio. Follow me on Twitter [@artificialguybr](https://twitter.com/artificialguybr).\n"
"**Note**: Generation quality may vary. For best results, adjust the parameters.\n"
"Special thanks to Hugging Face for their Diffusers library and Spaces platform."
)
selected_index = gr.State(None)
with gr.Row():
gallery = gr.Gallery(
[(item["image"], item["title"]) for item in loras],
label="LoRA Gallery",
allow_preview=False,
columns=3
)
with gr.Column():
prompt_title = gr.Markdown("### Click on a LoRA in the gallery to select it")
selected_info = gr.Markdown("")
prompt = gr.Textbox(label="Prompt", lines=3, placeholder="Type a prompt after selecting a LoRA")
negative_prompt = gr.Textbox(label="Negative Prompt", lines=2, value="low quality, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry")
with gr.Row():
cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=7.5)
steps = gr.Slider(label="Steps", minimum=1, maximum=100, step=1, value=30)
scheduler = gr.Dropdown(label="Scheduler", choices=["Euler", "DPM++ 2M"], value="Euler")
generate_button = gr.Button("Generate")
result = gr.Image(label="Generated Image")
gallery.select(update_selection, outputs=[prompt, selected_info, selected_index])
generate_button.click(
fn=run_lora,
inputs=[prompt, negative_prompt, cfg_scale, steps, selected_index, scheduler],
outputs=[result]
)
app.queue()
app.launch()