import gradio as gr import json import logging import torch from PIL import Image from diffusers import DiffusionPipeline, EulerDiscreteScheduler, DPMSolverMultistepScheduler import spaces # Load LoRAs from JSON file with open('loras.json', 'r') as f: loras = json.load(f) # Initialize the base model base_model = "stabilityai/stable-diffusion-xl-base-1.0" pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=torch.float16) pipe.to("cuda") def update_selection(evt: gr.SelectData): selected_lora = loras[evt.index] new_placeholder = f"Type a prompt for {selected_lora['title']}" lora_repo = selected_lora["repo"] updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo}) ✨" return ( gr.update(placeholder=new_placeholder), updated_text, evt.index ) @spaces.GPU def run_lora(prompt, negative_prompt, cfg_scale, steps, selected_index, scheduler): if selected_index is None: raise gr.Error("You must select a LoRA before proceeding.") selected_lora = loras[selected_index] lora_path = selected_lora["repo"] trigger_word = selected_lora["trigger_word"] # Load LoRA weights pipe.load_lora_weights(lora_path) # Set scheduler if scheduler == "Euler": pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config) elif scheduler == "DPM++ 2M": pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) # Generate image image = pipe( prompt=f"{prompt} {trigger_word}", negative_prompt=negative_prompt, num_inference_steps=steps, guidance_scale=cfg_scale, ).images[0] # Unload LoRA weights pipe.unload_lora_weights() return image with gr.Blocks(css="custom.css") as app: gr.Markdown("# artificialguybr LoRA portfolio") gr.Markdown( "### This is my portfolio. Follow me on Twitter [@artificialguybr](https://twitter.com/artificialguybr).\n" "**Note**: Generation quality may vary. For best results, adjust the parameters.\n" "Special thanks to Hugging Face for their Diffusers library and Spaces platform." ) selected_index = gr.State(None) with gr.Row(): gallery = gr.Gallery( [(item["image"], item["title"]) for item in loras], label="LoRA Gallery", allow_preview=False, columns=3 ) with gr.Column(): prompt_title = gr.Markdown("### Click on a LoRA in the gallery to select it") selected_info = gr.Markdown("") prompt = gr.Textbox(label="Prompt", lines=3, placeholder="Type a prompt after selecting a LoRA") negative_prompt = gr.Textbox(label="Negative Prompt", lines=2, value="low quality, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry") with gr.Row(): cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=7.5) steps = gr.Slider(label="Steps", minimum=1, maximum=100, step=1, value=30) scheduler = gr.Dropdown(label="Scheduler", choices=["Euler", "DPM++ 2M"], value="Euler") generate_button = gr.Button("Generate") result = gr.Image(label="Generated Image") gallery.select(update_selection, outputs=[prompt, selected_info, selected_index]) generate_button.click( fn=run_lora, inputs=[prompt, negative_prompt, cfg_scale, steps, selected_index, scheduler], outputs=[result] ) app.queue() app.launch()