File size: 6,010 Bytes
d8721ea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 |
import gradio as gr
import requests
import json
import os
API_KEY = os.getenv('API_KEY')
INVOKE_URL = "https://api.nvcf.nvidia.com/v2/nvcf/pexec/functions/008cff6d-4f4c-4514-b61e-bcfad6ba52a7"
FETCH_URL_FORMAT = "https://api.nvcf.nvidia.com/v2/nvcf/pexec/status/"
headers = {
"Authorization": f"Bearer {API_KEY}",
"Accept": "application/json",
"Content-Type": "application/json",
}
BASE_SYSTEM_MESSAGE = "I carefully provide accurate, factual, thoughtful, nuanced answers and am brilliant at reasoning."
def clear_chat(chat_history_state, chat_message):
print("Clearing chat...")
chat_history_state = []
chat_message = ''
return chat_history_state, chat_message
def user(message, history, system_message=None):
print(f"User message: {message}")
history = history or []
if system_message: # Check if a system message is provided and should be added
history.append({"role": "system", "content": system_message})
history.append({"role": "user", "content": message})
return history
def call_nvidia_api(history, max_tokens, temperature, top_p):
payload = {
"messages": history,
"temperature": temperature,
"top_p": top_p,
"max_tokens": max_tokens,
"stream": False
}
print(f"Payload enviado: {payload}") # Imprime o payload enviado
session = requests.Session()
response = session.post(INVOKE_URL, headers=headers, json=payload)
while response.status_code == 202:
request_id = response.headers.get("NVCF-REQID")
fetch_url = FETCH_URL_FORMAT + request_id
response = session.get(fetch_url, headers=headers)
response.raise_for_status()
response_body = response.json()
print(f"Payload recebido: {response_body}") # Imprime o payload recebido
if response_body["choices"]:
assistant_message = response_body["choices"][0]["message"]["content"]
history.append({"role": "assistant", "content": assistant_message})
return history
def chat(history, system_message, max_tokens, temperature, top_p):
print("Starting chat...")
updated_history = call_nvidia_api(history, max_tokens, temperature, top_p)
return updated_history, ""
# Gradio interface setup
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
gr.Markdown("Smaug 72B Free Demo")
description="""
<div style="text-align: center; font-size: 1.5em; margin-bottom: 20px;">
<strong>Explore the Capabilities of Smaug 72B</strong>
</div>
<p>Smaug-72B is a large language model developed by Abacus.AI by finetuning a Qwen-72B based model, ultimately LLAMA2 architecture, using the DPO-Positive (DPOP) technique.
</p>
<p> <strong>How to Use:</strong></p>
<ol>
<li>Enter your <strong>message</strong> in the textbox to start a conversation or ask a question.</li>
<li>Adjust the <strong>Temperature</strong> and <strong>Top P</strong> sliders to control the creativity and diversity of the responses.</li>
<li>Set the <strong>Max Tokens</strong> slider to determine the length of the response.</li>
<li>Use the <strong>System Message</strong> textbox if you wish to provide a specific context or instruction for the AI.</li>
<li>Click <strong>Send message</strong> to submit your query and receive a response from Smaug 72B.</li>
<li>Press <strong>New topic</strong> to clear the chat history and start a new conversation thread.</li>
</ol>
<p> <strong>Powered by NVIDIA's cutting-edge AI API, Smaug 72B offers an unparalleled opportunity to interact with an AI model of exceptional conversational ability, accessible to everyone at no cost.</strong></p>
<p> <strong>HF Created by:</strong> @artificialguybr (<a href="https://twitter.com/artificialguybr">Twitter</a>)</p>
<p> <strong>Discover more:</strong> <a href="https://artificialguy.com">artificialguy.com</a></p>
"""
gr.Markdown(description)
chatbot = gr.Chatbot()
message = gr.Textbox(label="What do you want to chat about?", placeholder="Ask me anything.", lines=3)
submit = gr.Button(value="Send message")
clear = gr.Button(value="New topic")
system_msg = gr.Textbox(BASE_SYSTEM_MESSAGE, label="System Message", placeholder="System prompt.", lines=5)
max_tokens = gr.Slider(20, 1024, label="Max Tokens", step=20, value=1024, interactive=True)
temperature = gr.Slider(0.0, 1.0, label="Temperature", step=0.1, value=0.7, interactive=True)
top_p = gr.Slider(0.0, 1.0, label="Top P", step=0.05, value=0.95, interactive=True)
chat_history_state = gr.State([])
# Ajuste na definição da função update_chatbot para aceitar o valor atualizado do system_msg
def update_chatbot(message, chat_history, system_message, max_tokens, temperature, top_p):
print("Updating chatbot...")
if not chat_history or (chat_history and chat_history[-1]["role"] != "user"):
chat_history = user(message, chat_history, system_message if not chat_history else None)
else:
chat_history = user(message, chat_history)
chat_history, _ = chat(chat_history, system_message, max_tokens, temperature, top_p)
formatted_chat_history = []
for user_msg, assistant_msg in zip([msg["content"].strip() for msg in chat_history if msg["role"] == "user"],
[msg["content"].strip() for msg in chat_history if msg["role"] == "assistant"]):
if user_msg or assistant_msg: # Verify if either message is not empty
formatted_chat_history.append([user_msg, assistant_msg])
return formatted_chat_history, chat_history, ""
submit.click(
fn=update_chatbot,
inputs=[message, chat_history_state, system_msg, max_tokens, temperature, top_p],
outputs=[chatbot, chat_history_state, message]
)
clear.click(
fn=clear_chat,
inputs=[chat_history_state, message],
outputs=[chat_history_state, message]
)
demo.launch() |