Spaces:
Runtime error
Runtime error
import gradio as gr | |
import requests | |
import json | |
import base64 | |
from PIL import Image | |
import io | |
import time | |
def encode_image(image): | |
if isinstance(image, dict) and 'path' in image: | |
image_path = image['path'] | |
elif isinstance(image, str): | |
image_path = image | |
else: | |
raise ValueError("Unsupported image format") | |
with open(image_path, "rb") as image_file: | |
return base64.b64encode(image_file.read()).decode('utf-8') | |
def bot_streaming(message, history, api_key, model, temperature, max_tokens, top_p, top_k, frequency_penalty, presence_penalty, repetition_penalty, stop, min_p, top_a, seed, logit_bias, logprobs, top_logprobs, response_format, tools, tool_choice): | |
headers = { | |
"Authorization": f"Bearer {api_key}", | |
"Content-Type": "application/json" | |
} | |
messages = [] | |
images = [] | |
for i, msg in enumerate(history): | |
if isinstance(msg[0], tuple): | |
image, text = msg[0] | |
base64_image = encode_image(image) | |
messages.append({ | |
"role": "user", | |
"content": [ | |
{"type": "text", "text": text}, | |
{"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{base64_image}"}} | |
] | |
}) | |
messages.append({"role": "assistant", "content": msg[1]}) | |
images.append(Image.open(image['path'] if isinstance(image, dict) else image).convert("RGB")) | |
else: | |
messages.append({"role": "user", "content": msg[0]}) | |
messages.append({"role": "assistant", "content": msg[1]}) | |
if isinstance(message, dict) and "files" in message and message["files"]: | |
image = message["files"][0] | |
base64_image = encode_image(image) | |
content = [ | |
{"type": "text", "text": message["text"]}, | |
{"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{base64_image}"}} | |
] | |
images.append(Image.open(image['path'] if isinstance(image, dict) else image).convert("RGB")) | |
else: | |
content = message["text"] if isinstance(message, dict) else message | |
messages.append({"role": "user", "content": content}) | |
data = { | |
"model": model, | |
"messages": messages, | |
"stream": True, | |
"temperature": temperature, | |
"max_tokens": max_tokens, | |
"top_p": top_p, | |
"top_k": top_k, | |
"frequency_penalty": frequency_penalty, | |
"presence_penalty": presence_penalty, | |
"repetition_penalty": repetition_penalty, | |
"stop": stop if stop else None, | |
"min_p": min_p, | |
"top_a": top_a, | |
"seed": seed, | |
"logit_bias": logit_bias, | |
"logprobs": logprobs, | |
"top_logprobs": top_logprobs, | |
"response_format": response_format, | |
"tools": tools, | |
"tool_choice": tool_choice | |
} | |
response = requests.post( | |
"https://openrouter.ai/api/v1/chat/completions", | |
headers=headers, | |
json=data, | |
stream=True | |
) | |
buffer = "" | |
for chunk in response.iter_lines(): | |
if chunk: | |
chunk = chunk.decode('utf-8') | |
if chunk.startswith("data: "): | |
chunk = chunk[6:] | |
if chunk.strip() == "[DONE]": | |
break | |
try: | |
chunk_data = json.loads(chunk) | |
if 'choices' in chunk_data and len(chunk_data['choices']) > 0: | |
delta = chunk_data['choices'][0].get('delta', {}) | |
if 'content' in delta: | |
buffer += delta['content'] | |
yield buffer | |
time.sleep(0.01) | |
except json.JSONDecodeError: | |
continue | |
with gr.Blocks(theme=gr.themes.Soft()) as demo: | |
gr.Markdown(""" | |
# π€ OpenRouter API Multimodal Chat | |
Chat with various AI models using the OpenRouter API. Supports text and image interactions. | |
## π Quick Start: | |
1. Enter your OpenRouter API key | |
2. Choose a model | |
3. Start chatting! | |
## π§ Advanced: | |
- Adjust parameters in the "Advanced Settings" section | |
- Upload images for multimodal interactions | |
Enjoy your AI-powered conversation! | |
""") | |
with gr.Row(): | |
with gr.Column(scale=1): | |
api_key = gr.Textbox(label="API Key", type="password", placeholder="Enter your OpenRouter API key") | |
model = gr.Dropdown( | |
label="Select Model", | |
choices=[ | |
"google/gemini-flash-1.5", | |
"openai/gpt-4o-mini", | |
"anthropic/claude-3.5-sonnet:beta", | |
"gryphe/mythomax-l2-13b", | |
"meta-llama/llama-3.1-70b-instruct", | |
"microsoft/wizardlm-2-8x22b", | |
"nousresearch/hermes-3-llama-3.1-405b", | |
"mistralai/mistral-nemo", | |
"meta-llama/llama-3.1-8b-instruct", | |
"deepseek/deepseek-chat", | |
"mistralai/mistral-tiny", | |
"openai/gpt-4o", | |
"mistralai/mistral-7b-instruct", | |
"meta-llama/llama-3-70b-instruct", | |
"microsoft/wizardlm-2-7b" | |
], | |
value="google/gemini-flash-1.5" | |
) | |
with gr.Accordion("Advanced Settings", open=False): | |
with gr.Row(): | |
with gr.Column(scale=1): | |
gr.Markdown("### Basic Parameters") | |
temperature = gr.Slider(minimum=0, maximum=2, value=1, step=0.1, label="Temperature") | |
max_tokens = gr.Slider(minimum=1, maximum=4096, value=1000, step=1, label="Max Tokens") | |
top_p = gr.Slider(minimum=0, maximum=1, value=1, step=0.01, label="Top P") | |
top_k = gr.Slider(minimum=0, maximum=100, value=0, step=1, label="Top K") | |
with gr.Column(scale=1): | |
gr.Markdown("### Penalty Parameters") | |
frequency_penalty = gr.Slider(minimum=-2, maximum=2, value=0, step=0.1, label="Frequency Penalty") | |
presence_penalty = gr.Slider(minimum=-2, maximum=2, value=0, step=0.1, label="Presence Penalty") | |
repetition_penalty = gr.Slider(minimum=0, maximum=2, value=1, step=0.1, label="Repetition Penalty") | |
with gr.Row(): | |
with gr.Column(scale=1): | |
gr.Markdown("### Advanced Control") | |
stop = gr.Textbox(label="Stop Sequence") | |
min_p = gr.Slider(minimum=0, maximum=1, value=0, step=0.01, label="Min P") | |
top_a = gr.Slider(minimum=0, maximum=1, value=0, step=0.01, label="Top A") | |
seed = gr.Number(label="Seed", precision=0) | |
with gr.Column(scale=1): | |
gr.Markdown("### Logging and Formatting") | |
logprobs = gr.Checkbox(label="Log Probabilities") | |
top_logprobs = gr.Slider(minimum=0, maximum=20, value=0, step=1, label="Top Log Probabilities") | |
logit_bias = gr.Textbox(label="Logit Bias (JSON)") | |
response_format = gr.Textbox(label="Response Format (JSON)") | |
with gr.Row(): | |
with gr.Column(scale=1): | |
gr.Markdown("### Tools") | |
tools = gr.Textbox(label="Tools (JSON Array)", lines=3) | |
tool_choice = gr.Textbox(label="Tool Choice") | |
with gr.Column(scale=2): | |
chatbot = gr.ChatInterface( | |
fn=bot_streaming, | |
additional_inputs=[ | |
api_key, model, temperature, max_tokens, top_p, top_k, | |
frequency_penalty, presence_penalty, repetition_penalty, stop, | |
min_p, top_a, seed, logit_bias, logprobs, top_logprobs, | |
response_format, tools, tool_choice | |
], | |
title="π¬ Chat with AI", | |
description="Upload images or type your message to start the conversation.", | |
retry_btn="π Retry", | |
undo_btn="β©οΈ Undo", | |
clear_btn="ποΈ Clear", | |
multimodal=True, | |
cache_examples=False, | |
fill_height=True, | |
) | |
demo.launch(debug=True, share=True) |