Spaces:
Sleeping
Sleeping
acharyaaditya26
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
import gradio as gr
|
2 |
-
import
|
3 |
from transformers import AutoModel, AutoTokenizer
|
4 |
from PIL import Image
|
5 |
import numpy as np
|
@@ -11,7 +11,9 @@ import tempfile
|
|
11 |
import time
|
12 |
import shutil
|
13 |
from pathlib import Path
|
|
|
14 |
|
|
|
15 |
tokenizer = AutoTokenizer.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True)
|
16 |
model = AutoModel.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True, low_cpu_mem_usage=True, device_map='cuda', use_safetensors=True)
|
17 |
model = model.eval().cuda()
|
@@ -19,6 +21,7 @@ model = model.eval().cuda()
|
|
19 |
UPLOAD_FOLDER = "./uploads"
|
20 |
RESULTS_FOLDER = "./results"
|
21 |
|
|
|
22 |
for folder in [UPLOAD_FOLDER, RESULTS_FOLDER]:
|
23 |
if not os.path.exists(folder):
|
24 |
os.makedirs(folder)
|
@@ -28,75 +31,44 @@ def image_to_base64(image):
|
|
28 |
image.save(buffered, format="PNG")
|
29 |
return base64.b64encode(buffered.getvalue()).decode()
|
30 |
|
31 |
-
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
unique_id = str(uuid.uuid4())
|
34 |
-
|
35 |
-
|
36 |
|
37 |
-
|
|
|
38 |
|
39 |
try:
|
40 |
-
|
|
|
|
|
|
|
41 |
res = model.chat(tokenizer, image_path, ocr_type='ocr')
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
res = model.chat_crop(tokenizer, image_path, ocr_type='format', render=True, save_render_file=result_path)
|
50 |
-
elif got_mode == "plain fine-grained OCR":
|
51 |
-
res = model.chat(tokenizer, image_path, ocr_type='ocr', ocr_box=ocr_box, ocr_color=ocr_color)
|
52 |
-
return res, None
|
53 |
-
elif got_mode == "format fine-grained OCR":
|
54 |
-
res = model.chat(tokenizer, image_path, ocr_type='format', ocr_box=ocr_box, ocr_color=ocr_color, render=True, save_render_file=result_path)
|
55 |
-
|
56 |
-
# res_markdown = f"$$ {res} $$"
|
57 |
-
res_markdown = res
|
58 |
-
|
59 |
-
if "format" in got_mode and os.path.exists(result_path):
|
60 |
-
with open(result_path, 'r') as f:
|
61 |
-
html_content = f.read()
|
62 |
-
encoded_html = base64.b64encode(html_content.encode('utf-8')).decode('utf-8')
|
63 |
-
iframe_src = f"data:text/html;base64,{encoded_html}"
|
64 |
-
iframe = f'<iframe src="{iframe_src}" width="100%" height="600px"></iframe>'
|
65 |
-
download_link = f'<a href="data:text/html;base64,{encoded_html}" download="result_{unique_id}.html">Download Full Result</a>'
|
66 |
-
return res_markdown, f"{download_link}<br>{iframe}"
|
67 |
-
else:
|
68 |
-
return res_markdown, None
|
69 |
except Exception as e:
|
70 |
return f"Error: {str(e)}", None
|
71 |
finally:
|
72 |
-
if os.path.exists(
|
73 |
-
os.remove(
|
74 |
-
|
75 |
-
|
76 |
-
if "fine-grained" in task:
|
77 |
-
return [
|
78 |
-
gr.update(visible=True),
|
79 |
-
gr.update(visible=False),
|
80 |
-
gr.update(visible=False),
|
81 |
-
]
|
82 |
-
else:
|
83 |
-
return [
|
84 |
-
gr.update(visible=False),
|
85 |
-
gr.update(visible=False),
|
86 |
-
gr.update(visible=False),
|
87 |
-
]
|
88 |
-
|
89 |
-
def fine_grained_update(task):
|
90 |
-
if task == "box":
|
91 |
-
return [
|
92 |
-
gr.update(visible=False, value = ""),
|
93 |
-
gr.update(visible=True),
|
94 |
-
]
|
95 |
-
elif task == 'color':
|
96 |
-
return [
|
97 |
-
gr.update(visible=True),
|
98 |
-
gr.update(visible=False, value = ""),
|
99 |
-
]
|
100 |
|
101 |
def cleanup_old_files():
|
102 |
current_time = time.time()
|
@@ -118,83 +90,49 @@ with gr.Blocks() as demo:
|
|
118 |
"🔥🔥🔥This is the official online demo of GOT-OCR-2.0 model!!!"
|
119 |
|
120 |
### Demo Guidelines
|
121 |
-
You need to upload your
|
122 |
-
- **plain texts OCR & format texts OCR**: The two modes are for the image-level OCR.
|
123 |
-
- **plain multi-crop OCR & format multi-crop OCR**: For images with more complex content, you can achieve higher-quality results with these modes.
|
124 |
-
- **plain fine-grained OCR & format fine-grained OCR**: In these modes, you can specify fine-grained regions on the input image for more flexible OCR. Fine-grained regions can be coordinates of the box, red color, blue color, or green color.
|
125 |
""")
|
126 |
|
127 |
with gr.Row():
|
128 |
with gr.Column():
|
129 |
-
|
130 |
-
task_dropdown = gr.Dropdown(
|
131 |
-
choices=[
|
132 |
-
"plain texts OCR",
|
133 |
-
"format texts OCR",
|
134 |
-
"plain multi-crop OCR",
|
135 |
-
"format multi-crop OCR",
|
136 |
-
"plain fine-grained OCR",
|
137 |
-
"format fine-grained OCR",
|
138 |
-
],
|
139 |
-
label="Choose one mode of GOT",
|
140 |
-
value="plain texts OCR"
|
141 |
-
)
|
142 |
-
fine_grained_dropdown = gr.Dropdown(
|
143 |
-
choices=["box", "color"],
|
144 |
-
label="fine-grained type",
|
145 |
-
visible=False
|
146 |
-
)
|
147 |
-
color_dropdown = gr.Dropdown(
|
148 |
-
choices=["red", "green", "blue"],
|
149 |
-
label="color list",
|
150 |
-
visible=False
|
151 |
-
)
|
152 |
-
box_input = gr.Textbox(
|
153 |
-
label="input box: [x1,y1,x2,y2]",
|
154 |
-
placeholder="e.g., [0,0,100,100]",
|
155 |
-
visible=False
|
156 |
-
)
|
157 |
submit_button = gr.Button("Submit")
|
158 |
|
159 |
with gr.Column():
|
160 |
-
ocr_result = gr.
|
161 |
|
162 |
with gr.Column():
|
163 |
-
gr.Markdown("**
|
164 |
-
|
165 |
-
|
166 |
-
gr.Examples(
|
167 |
-
examples=[
|
168 |
-
["assets/coco.jpg", "plain texts OCR", "", "", ""],
|
169 |
-
["assets/en_30.png", "plain texts OCR", "", "", ""],
|
170 |
-
["assets/table.jpg", "format texts OCR", "", "", ""],
|
171 |
-
["assets/eq.jpg", "format texts OCR", "", "", ""],
|
172 |
-
["assets/exam.jpg", "format texts OCR", "", "", ""],
|
173 |
-
["assets/giga.jpg", "format multi-crop OCR", "", "", ""],
|
174 |
-
["assets/aff2.png", "plain fine-grained OCR", "box", "", "[409,763,756,891]"],
|
175 |
-
["assets/color.png", "plain fine-grained OCR", "color", "red", ""],
|
176 |
-
],
|
177 |
-
inputs=[image_input, task_dropdown, fine_grained_dropdown, color_dropdown, box_input],
|
178 |
-
outputs=[ocr_result, html_result],
|
179 |
-
fn=run_GOT,
|
180 |
-
label="examples",
|
181 |
-
)
|
182 |
|
183 |
-
task_dropdown.change(
|
184 |
-
task_update,
|
185 |
-
inputs=[task_dropdown],
|
186 |
-
outputs=[fine_grained_dropdown, color_dropdown, box_input]
|
187 |
-
)
|
188 |
-
fine_grained_dropdown.change(
|
189 |
-
fine_grained_update,
|
190 |
-
inputs=[fine_grained_dropdown],
|
191 |
-
outputs=[color_dropdown, box_input]
|
192 |
-
)
|
193 |
-
|
194 |
submit_button.click(
|
195 |
run_GOT,
|
196 |
-
inputs=[
|
197 |
-
outputs=[ocr_result
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
198 |
)
|
199 |
|
200 |
if __name__ == "__main__":
|
|
|
1 |
import gradio as gr
|
2 |
+
import fitz # PyMuPDF
|
3 |
from transformers import AutoModel, AutoTokenizer
|
4 |
from PIL import Image
|
5 |
import numpy as np
|
|
|
11 |
import time
|
12 |
import shutil
|
13 |
from pathlib import Path
|
14 |
+
import json
|
15 |
|
16 |
+
# Load tokenizer and model
|
17 |
tokenizer = AutoTokenizer.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True)
|
18 |
model = AutoModel.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True, low_cpu_mem_usage=True, device_map='cuda', use_safetensors=True)
|
19 |
model = model.eval().cuda()
|
|
|
21 |
UPLOAD_FOLDER = "./uploads"
|
22 |
RESULTS_FOLDER = "./results"
|
23 |
|
24 |
+
# Ensure directories exist
|
25 |
for folder in [UPLOAD_FOLDER, RESULTS_FOLDER]:
|
26 |
if not os.path.exists(folder):
|
27 |
os.makedirs(folder)
|
|
|
31 |
image.save(buffered, format="PNG")
|
32 |
return base64.b64encode(buffered.getvalue()).decode()
|
33 |
|
34 |
+
def pdf_to_images(pdf_path):
|
35 |
+
images = []
|
36 |
+
pdf_document = fitz.open(pdf_path)
|
37 |
+
for page_num in range(len(pdf_document)):
|
38 |
+
page = pdf_document.load_page(page_num)
|
39 |
+
pix = page.get_pixmap()
|
40 |
+
img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
|
41 |
+
images.append(img)
|
42 |
+
return images
|
43 |
+
|
44 |
+
def run_GOT(pdf_file):
|
45 |
unique_id = str(uuid.uuid4())
|
46 |
+
pdf_path = os.path.join(UPLOAD_FOLDER, f"{unique_id}.pdf")
|
47 |
+
shutil.copy(pdf_file, pdf_path)
|
48 |
|
49 |
+
images = pdf_to_images(pdf_path)
|
50 |
+
results = []
|
51 |
|
52 |
try:
|
53 |
+
for i, image in enumerate(images):
|
54 |
+
image_path = os.path.join(UPLOAD_FOLDER, f"{unique_id}_page_{i+1}.png")
|
55 |
+
image.save(image_path)
|
56 |
+
|
57 |
res = model.chat(tokenizer, image_path, ocr_type='ocr')
|
58 |
+
results.append({
|
59 |
+
"page_number": i + 1,
|
60 |
+
"text": res
|
61 |
+
})
|
62 |
+
|
63 |
+
if os.path.exists(image_path):
|
64 |
+
os.remove(image_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
except Exception as e:
|
66 |
return f"Error: {str(e)}", None
|
67 |
finally:
|
68 |
+
if os.path.exists(pdf_path):
|
69 |
+
os.remove(pdf_path)
|
70 |
+
|
71 |
+
return json.dumps(results, indent=4)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
|
73 |
def cleanup_old_files():
|
74 |
current_time = time.time()
|
|
|
90 |
"🔥🔥🔥This is the official online demo of GOT-OCR-2.0 model!!!"
|
91 |
|
92 |
### Demo Guidelines
|
93 |
+
You need to upload your PDF below, and the model will automatically perform plain text OCR on each page.
|
|
|
|
|
|
|
94 |
""")
|
95 |
|
96 |
with gr.Row():
|
97 |
with gr.Column():
|
98 |
+
pdf_input = gr.File(type="filepath", label="Upload your PDF")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
submit_button = gr.Button("Submit")
|
100 |
|
101 |
with gr.Column():
|
102 |
+
ocr_result = gr.JSON(label="GOT output")
|
103 |
|
104 |
with gr.Column():
|
105 |
+
gr.Markdown("**PDF Preview:**")
|
106 |
+
pdf_preview = gr.HTML(label="PDF Preview", show_label=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
submit_button.click(
|
109 |
run_GOT,
|
110 |
+
inputs=[pdf_input],
|
111 |
+
outputs=[ocr_result]
|
112 |
+
)
|
113 |
+
|
114 |
+
# Function to update PDF preview
|
115 |
+
def update_pdf_preview(pdf_file):
|
116 |
+
if not pdf_file:
|
117 |
+
return ""
|
118 |
+
pdf_path = pdf_file
|
119 |
+
pdf_document = fitz.open(pdf_path)
|
120 |
+
html_content = ""
|
121 |
+
for page_num in range(len(pdf_document)):
|
122 |
+
page = pdf_document.load_page(page_num)
|
123 |
+
pix = page.get_pixmap()
|
124 |
+
img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
|
125 |
+
img_byte_arr = io.BytesIO()
|
126 |
+
img.save(img_byte_arr, format='PNG')
|
127 |
+
img_byte_arr = img_byte_arr.getvalue()
|
128 |
+
img_base64 = base64.b64encode(img_byte_arr).decode('utf-8')
|
129 |
+
html_content += f'<img src="data:image/png;base64,{img_base64}" width="100%"><br>'
|
130 |
+
return html_content
|
131 |
+
|
132 |
+
pdf_input.change(
|
133 |
+
update_pdf_preview,
|
134 |
+
inputs=[pdf_input],
|
135 |
+
outputs=[pdf_preview]
|
136 |
)
|
137 |
|
138 |
if __name__ == "__main__":
|