summarizer / app.py
arithescientist's picture
Update app.py
ef575bd
raw
history blame
951 Bytes
import gradio as gr
import numpy as np
import pytesseract as pt
import pdf2image
from fpdf import FPDF
import re
import nltk
from nltk.tokenize import sent_tokenize
from nltk.tokenize import word_tokenize
import os
import pdfkit
import yake
from transformers import AutoTokenizer, AutoModelForPreTraining, AutoModel, AutoConfig
from summarizer import Summarizer,TransformerSummarizer
from transformers import pipelines
nltk.download('punkt')
model_name = 'nlpaueb/legal-bert-base-uncased'
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForPreTraining.from_pretrained(model_name)
bert_legal_model = Summarizer(custom_model=model, custom_tokenizer=tokenizer)
def get_response(input_text):
output_text= bert_legal_model(input_text, min_length = 8, ratio = 0.05)
return output_text
iface = gr.Interface(
get_response,
"text",
"text"
)
if __name__ == "__main__":
iface.launch(share=False)