File size: 951 Bytes
2e9a8c4
037452a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
093ef16
 
 
 
 
 
 
 
037452a
 
 
9d89cb5
9b2fb3c
037452a
 
 
 
 
 
 
 
 
 
 
ef575bd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import gradio as gr
import numpy as np
import pytesseract as pt
import pdf2image
from fpdf import FPDF
import re
import nltk
from nltk.tokenize import sent_tokenize
from nltk.tokenize import word_tokenize
import os
import pdfkit
import yake
from transformers import AutoTokenizer, AutoModelForPreTraining, AutoModel, AutoConfig
from summarizer import Summarizer,TransformerSummarizer
from transformers import pipelines
nltk.download('punkt')


model_name = 'nlpaueb/legal-bert-base-uncased'


tokenizer = AutoTokenizer.from_pretrained(model_name)

model = AutoModelForPreTraining.from_pretrained(model_name)
bert_legal_model = Summarizer(custom_model=model, custom_tokenizer=tokenizer)
 

def get_response(input_text):

  output_text= bert_legal_model(input_text,  min_length = 8, ratio = 0.05)
  return output_text
  
  
 
iface = gr.Interface(
    get_response, 
    "text", 
    "text"
   )

if __name__ == "__main__":
    iface.launch(share=False)