Spaces:
Running
Running
import gradio as gr | |
import os | |
import nltk | |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM | |
from fpdf import FPDF | |
from gtts import gTTS | |
from pdfminer.high_level import extract_text | |
nltk.download('punkt') | |
# Load the models and tokenizers once, not every time the function is called | |
tokenizer = AutoTokenizer.from_pretrained("facebook/bart-large-cnn") | |
model = AutoModelForSeq2SeqLM.from_pretrained("facebook/bart-large-cnn") | |
# Main processing function | |
def pdf_to_text(text, PDF, min_length=20): | |
try: | |
# Extract text from PDF if no input text provided | |
if text == "": | |
text = extract_text(PDF.name) | |
# Tokenize text | |
inputs = tokenizer([text], max_length=1024, return_tensors="pt") | |
min_length = int(min_length) | |
# Generate summary | |
summary_ids = model.generate(inputs["input_ids"], num_beams=2, min_length=min_length, max_length=min_length+1000) | |
output_text = tokenizer.batch_decode(summary_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True)[0] | |
# Save summarized text to PDF | |
pdf = FPDF() | |
pdf.add_page() | |
pdf.set_font("Times", size=12) | |
pdf.multi_cell(190, 10, txt=output_text, align='C') | |
pdf_output_path = "legal.pdf" | |
pdf.output(pdf_output_path) | |
# Convert summarized text to audio | |
audio_output_path = "legal.wav" | |
tts = gTTS(text=output_text, lang='en', slow=False) | |
tts.save(audio_output_path) | |
return audio_output_path, output_text, pdf_output_path | |
except Exception as e: | |
return None, f"An error occurred: {str(e)}", None | |
# Gradio interface | |
iface = gr.Interface( | |
fn=pdf_to_text, | |
inputs=["text", gr.inputs.File(label="Upload PDF"), gr.inputs.Slider(minimum=10, maximum=100, step=10, default=20, label="Summary Minimum Length")], | |
outputs=["audio", "text", "file"] | |
) | |
if __name__ == "__main__": | |
iface.launch() | |