eleanor_rigby / app.py
arieridwans's picture
Update app.py
722aadf verified
raw
history blame
1.26 kB
import streamlit as st
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
# Load the Phi 2 model and tokenizer
tokenizer = AutoTokenizer.from_pretrained(
"microsoft/phi-2",
trust_remote_code=True
)
model = AutoModelForCausalLM.from_pretrained(
"microsoft/phi-2",
device_map="auto",
trust_remote_code=True
)
# Streamlit UI
st.title("Eleanor Rigby")
# User input prompt
prompt = st.text_area("Enter your prompt that can be song lyrics:", """Yesterday, I saw you in my dream""")
# Generate output based on user input
if st.button("Generate Output"):
instruct_prompt = "Instruct:You are a song writer and your main reference is The Beatles. Write a song lyrics by completing these words:"
output_prompt = "Output:"
prompt = """ {0}{1}\n{2} """.format(instruct_prompt, user_prompt, output_prompt)
with torch.no_grad():
token_ids = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt")
output_ids = model.generate(
token_ids.to(model.device),
max_new_tokens=512,
do_sample=True,
temperature=0.3
)
output = tokenizer.decode(output_ids[0][token_ids.size(1):])
st.text("Generated Output:")
st.write(output)