Spaces:
Sleeping
Sleeping
File size: 1,288 Bytes
63f3383 b168e68 c2b847d b168e68 63f3383 b168e68 63f3383 b168e68 63f3383 b168e68 83c7cf8 b168e68 f829e6e 51a8c67 b168e68 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 |
import streamlit as st
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
# Load the Phi 2 model and tokenizer
tokenizer = AutoTokenizer.from_pretrained(
"arieridwans/phi_2-finetuned-lyrics",
trust_remote_code=True
)
model = AutoModelForCausalLM.from_pretrained(
"microsoft/phi-2",
device_map="auto",
trust_remote_code=True
)
# Streamlit UI
st.title("Eleanor Rigby")
# User input prompt
user_prompt = st.text_area("Enter your prompt that can be song lyrics:", """Yesterday, I saw you in my dream""")
# Generate output based on user input
if st.button("Generate Output"):
instruct_prompt = "Instruct:You are a song writer and your main reference is The Beatles. Write a song lyrics by completing these words:"
output_prompt = "Output:"
prompt = """ {0}{1}\n{2} """.format(instruct_prompt, user_prompt, output_prompt)
with torch.no_grad():
token_ids = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt")
output_ids = model.generate(
token_ids.to(model.device),
max_new_tokens=512,
do_sample=True,
temperature=0.3
)
output = tokenizer.decode(output_ids[0][token_ids.size(1):])
st.text("Generated Output:")
st.write(output) |