File size: 1,232 Bytes
63f3383
 
 
 
b168e68
 
 
 
 
63f3383
b168e68
 
 
 
 
63f3383
b168e68
 
63f3383
b168e68
 
 
 
 
f829e6e
51a8c67
b168e68
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
import streamlit as st
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

# Load the Phi 2 model and tokenizer
tokenizer = AutoTokenizer.from_pretrained(
    "microsoft/phi-2",
    trust_remote_code=True
)

model = AutoModelForCausalLM.from_pretrained(
    "microsoft/phi-2",
    device_map="auto",
    trust_remote_code=True
)

# Streamlit UI
st.title("Eleanor Rigby")

# User input prompt
prompt = st.text_area("Enter your prompt:", """Write a story about Nasa""")

# Generate output based on user input
if st.button("Generate Output"):
    instruct_prompt = "Instruct:You are a song writer and your main reference is The Beatles. Write a song lyrics by completing these words:"
    output_prompt = "Output:"
    prompt = """ {0}{1}\n{2} """.format(instruct_prompt, user_prompt, output_prompt)
    with torch.no_grad():
        token_ids = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt")
        output_ids = model.generate(
            token_ids.to(model.device),
            max_new_tokens=512,
            do_sample=True,
            temperature=0.3
        )

    output = tokenizer.decode(output_ids[0][token_ids.size(1):])
    st.text("Generated Output:")
    st.write(output)