Spaces:
Sleeping
Sleeping
File size: 1,233 Bytes
63f3383 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 |
import streamlit as st
import subprocess
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
st.title('Eleanor Rigby')
inference_model = AutoModelForCausalLM.from_pretrained("microsoft/phi_2-finetuned-lyrics", trust_remote_code=True, torch_dtype=torch.float32)
inference_tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-2", use_fast=True)
inference_tokenizer.pad_token=inference_tokenizer.eos_token
user_prompt = st.text_area("Enter your prompt that can be song lyrics", "E.g. Yesterday, I saw you in my dream")
if st.button("Generate Output"):
instruct_prompt = "Instruct:You are a song writer and your main reference is The Beatles. Write a song lyrics by completing these words:"
output_prompt = " Output:"
input = inference_tokenizer(""" {0}{1}\n{2} """.format(instruct_prompt, user_prompt, output_prompt),
return_tensors="pt",
return_attention_mask=False,
padding=True,
truncation=True)
result = inference_model.generate(**input, repetition_penalty=1.2, max_length=1024)
output = inference_tokenizer.batch_decode(result, skip_special_tokens=True)[0]
st.text("Generated Output:")
st.write(output)
|