File size: 1,295 Bytes
63f3383
 
 
 
b168e68
 
24f2e60
b168e68
 
0a2a6c5
63f3383
b168e68
24f2e60
b168e68
 
 
63f3383
b168e68
07aebcc
63f3383
b168e68
83c7cf8
b168e68
 
 
f829e6e
51a8c67
2195eff
07aebcc
 
 
 
13184eb
2195eff
1c8c3b4
b168e68
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import streamlit as st
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

# Load the Phi 2 model and tokenizer
tokenizer = AutoTokenizer.from_pretrained(
    "microsoft/phi-2",
    trust_remote_code=True
)
tokenizer.pad_token=tokenizer.eos_token

model = AutoModelForCausalLM.from_pretrained(
    "arieridwans/phi_2-finetuned-lyrics",
    device_map="auto",
    trust_remote_code=True
)

# Streamlit UI
st.title("Eleanor Rigby")

# User input prompt
user_prompt = st.text_area("Enter your prompt that can be song lyrics:", """Yesterday, I saw you in my dream""")

# Generate output based on user input
if st.button("Generate Output"):
    instruct_prompt = "Instruct:You are a song writer and your main reference is The Beatles. Write a song lyrics by completing these words:"
    output_prompt = "Output:"
    input = tokenizer(""" {0}{1}\n{2} """.format(instruct_prompt, user_prompt, output_prompt),
                     return_tensors="pt",
                     return_attention_mask=False,
                     padding=True,
                     truncation=True)
    result = model.generate(**input, repetition_penalty=1.2, max_length=1024)
    output = tokenizer.batch_decode(result, skip_special_tokens=True)[0]
    st.text("Generated Result:")
    st.write(output)