Spaces:
Sleeping
Sleeping
ariankhalfani
commited on
Commit
•
ee1461b
1
Parent(s):
ea1b862
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sqlite3
|
3 |
+
import requests
|
4 |
+
import PyPDF2
|
5 |
+
import faiss
|
6 |
+
import numpy as np
|
7 |
+
from sentence_transformers import SentenceTransformer
|
8 |
+
import gradio as gr
|
9 |
+
|
10 |
+
# Configure Hugging Face API
|
11 |
+
huggingface_api_url = "https://api-inference.huggingface.co/models/meta-llama/Meta-Llama-3-70B-Instruct"
|
12 |
+
huggingface_api_key = os.getenv("HUGGINGFACE_API_KEY")
|
13 |
+
headers = {"Authorization": f"Bearer {huggingface_api_key}"}
|
14 |
+
|
15 |
+
# Function to query Hugging Face model
|
16 |
+
def query_huggingface(payload):
|
17 |
+
response = requests.post(huggingface_api_url, headers=headers, json=payload)
|
18 |
+
return response.json()
|
19 |
+
|
20 |
+
# Function to extract text from PDF
|
21 |
+
def extract_text_from_pdf(pdf_file):
|
22 |
+
pdf_reader = PyPDF2.PdfReader(pdf_file)
|
23 |
+
text = ""
|
24 |
+
for page_num in range(len(pdf_reader.pages)):
|
25 |
+
page = pdf_reader.pages[page_num]
|
26 |
+
text += page.extract_text()
|
27 |
+
return text
|
28 |
+
|
29 |
+
# Initialize SQLite database
|
30 |
+
def init_db():
|
31 |
+
conn = sqlite3.connect('storage_warehouse.db')
|
32 |
+
c = conn.cursor()
|
33 |
+
c.execute('''
|
34 |
+
CREATE TABLE IF NOT EXISTS context (
|
35 |
+
id INTEGER PRIMARY KEY AUTOINCREMENT,
|
36 |
+
name TEXT,
|
37 |
+
content TEXT
|
38 |
+
)
|
39 |
+
''')
|
40 |
+
conn.commit()
|
41 |
+
conn.close()
|
42 |
+
|
43 |
+
# Add context to the database
|
44 |
+
def add_context(name, content):
|
45 |
+
conn = sqlite3.connect('storage_warehouse.db')
|
46 |
+
c = conn.cursor()
|
47 |
+
c.execute('INSERT INTO context (name, content) VALUES (?, ?)', (name, content))
|
48 |
+
conn.commit()
|
49 |
+
conn.close()
|
50 |
+
|
51 |
+
# Retrieve context from the database
|
52 |
+
def get_context():
|
53 |
+
conn = sqlite3.connect('storage_warehouse.db')
|
54 |
+
c = conn.cursor()
|
55 |
+
c.execute('SELECT content FROM context')
|
56 |
+
context = c.fetchall()
|
57 |
+
conn.close()
|
58 |
+
return [c[0] for c in context]
|
59 |
+
|
60 |
+
# Function to create or update the FAISS index
|
61 |
+
def update_faiss_index():
|
62 |
+
contexts = get_context()
|
63 |
+
embeddings = model.encode(contexts, convert_to_tensor=True)
|
64 |
+
index = faiss.IndexFlatL2(embeddings.shape[1])
|
65 |
+
index.add(embeddings.cpu().numpy())
|
66 |
+
return index, contexts
|
67 |
+
|
68 |
+
# Retrieve relevant context from the FAISS index
|
69 |
+
def retrieve_relevant_context(index, contexts, query, top_k=5):
|
70 |
+
query_embedding = model.encode([query], convert_to_tensor=True).cpu().numpy()
|
71 |
+
distances, indices = index.search(query_embedding, top_k)
|
72 |
+
relevant_contexts = [contexts[i] for i in indices[0]]
|
73 |
+
return relevant_contexts
|
74 |
+
|
75 |
+
# Initialize the database and FAISS model
|
76 |
+
init_db()
|
77 |
+
model = SentenceTransformer('all-MiniLM-L6-v2')
|
78 |
+
faiss_index, context_list = update_faiss_index()
|
79 |
+
|
80 |
+
# Function to handle chatbot responses
|
81 |
+
def chatbot_response(question):
|
82 |
+
relevant_contexts = retrieve_relevant_context(faiss_index, context_list, question)
|
83 |
+
user_input = f"question: {question} context: {' '.join(relevant_contexts)}"
|
84 |
+
response = query_huggingface({"inputs": user_input})
|
85 |
+
response_text = response.get("generated_text", "Sorry, I couldn't generate a response.")
|
86 |
+
return response_text
|
87 |
+
|
88 |
+
# Function to handle PDF uploads
|
89 |
+
def handle_pdf_upload(pdf_file):
|
90 |
+
context = extract_text_from_pdf(pdf_file)
|
91 |
+
add_context(pdf_file.name, context)
|
92 |
+
faiss_index, context_list = update_faiss_index() # Update FAISS index
|
93 |
+
return f"Context from {pdf_file.name} added to the database."
|
94 |
+
|
95 |
+
# Gradio UI
|
96 |
+
with gr.Blocks() as demo:
|
97 |
+
gr.Markdown("# Storage Warehouse Customer Service Chatbot")
|
98 |
+
|
99 |
+
with gr.Row():
|
100 |
+
with gr.Column(scale=4):
|
101 |
+
with gr.Box():
|
102 |
+
pdf_upload = gr.File(label="Upload PDF", file_types=["pdf"], interactive=True)
|
103 |
+
upload_button = gr.Button("Upload")
|
104 |
+
upload_status = gr.Textbox(label="Upload Status")
|
105 |
+
|
106 |
+
def handle_upload(files):
|
107 |
+
for file in files:
|
108 |
+
result = handle_pdf_upload(file.name)
|
109 |
+
upload_status.value = result
|
110 |
+
|
111 |
+
upload_button.click(fn=handle_upload, inputs=pdf_upload, outputs=upload_status)
|
112 |
+
|
113 |
+
with gr.Column(scale=8):
|
114 |
+
chatbot = gr.Chatbot(label="Chatbot")
|
115 |
+
question = gr.Textbox(label="Your question here:")
|
116 |
+
submit_button = gr.Button("Submit")
|
117 |
+
|
118 |
+
def handle_chat(user_input):
|
119 |
+
bot_response = chatbot_response(user_input)
|
120 |
+
return gr.Chatbot.update([[user_input, bot_response]])
|
121 |
+
|
122 |
+
submit_button.click(fn=handle_chat, inputs=question, outputs=chatbot)
|
123 |
+
|
124 |
+
if __name__ == "__main__":
|
125 |
+
demo.launch()
|