Spaces:
Sleeping
Sleeping
ariankhalfani
commited on
Commit
•
9874be5
1
Parent(s):
01d7a69
Update app.py
Browse files
app.py
CHANGED
@@ -7,14 +7,20 @@ import numpy as np
|
|
7 |
from sentence_transformers import SentenceTransformer
|
8 |
import gradio as gr
|
9 |
|
10 |
-
# Configure Hugging Face API
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
huggingface_api_key = os.getenv("HUGGINGFACE_API_KEY")
|
13 |
headers = {"Authorization": f"Bearer {huggingface_api_key}"}
|
14 |
|
15 |
# Function to query Hugging Face model
|
16 |
-
def query_huggingface(payload):
|
17 |
-
response = requests.post(
|
18 |
return response.json()
|
19 |
|
20 |
# Function to extract text from PDF
|
@@ -83,12 +89,12 @@ init_db()
|
|
83 |
model = SentenceTransformer('all-MiniLM-L6-v2')
|
84 |
faiss_index, context_list = update_faiss_index()
|
85 |
|
86 |
-
# Gradio interface
|
87 |
-
def chatbot(question):
|
88 |
relevant_contexts = retrieve_relevant_context(faiss_index, context_list, question)
|
89 |
user_input = f"question: {question} context: {' '.join(relevant_contexts)}"
|
90 |
-
response = query_huggingface({"inputs": user_input})
|
91 |
-
response_text = response.get("generated_text", "Sorry, I couldn't generate a response.")
|
92 |
return response_text
|
93 |
|
94 |
# File upload function
|
@@ -100,8 +106,13 @@ def upload_pdf(file):
|
|
100 |
return "PDF content added to context."
|
101 |
|
102 |
# Gradio interface
|
103 |
-
iface = gr.Interface(
|
|
|
|
|
|
|
|
|
|
|
104 |
file_upload = gr.Interface(fn=upload_pdf, inputs="file", outputs="text", title="Upload PDF for Context")
|
105 |
|
106 |
app = gr.TabbedInterface([iface, file_upload], ["Chatbot", "Upload PDF"])
|
107 |
-
app.launch()
|
|
|
7 |
from sentence_transformers import SentenceTransformer
|
8 |
import gradio as gr
|
9 |
|
10 |
+
# Configure Hugging Face API URLs and headers
|
11 |
+
api_urls = {
|
12 |
+
"Meta-Llama-3-70B-Instruct": "https://api-inference.huggingface.co/models/meta-llama/Meta-Llama-3-70B-Instruct",
|
13 |
+
"Meta-Llama-3-8B-Instruct": "https://api-inference.huggingface.co/models/meta-llama/Meta-Llama-3-8B-Instruct",
|
14 |
+
"Gemma-2-27B-IT": "https://api-inference.huggingface.co/models/google/gemma-2-27b-it",
|
15 |
+
"Gemma-2-27B": "https://api-inference.huggingface.co/models/google/gemma-2-27b"
|
16 |
+
}
|
17 |
+
|
18 |
huggingface_api_key = os.getenv("HUGGINGFACE_API_KEY")
|
19 |
headers = {"Authorization": f"Bearer {huggingface_api_key}"}
|
20 |
|
21 |
# Function to query Hugging Face model
|
22 |
+
def query_huggingface(model_name, payload):
|
23 |
+
response = requests.post(api_urls[model_name], headers=headers, json=payload)
|
24 |
return response.json()
|
25 |
|
26 |
# Function to extract text from PDF
|
|
|
89 |
model = SentenceTransformer('all-MiniLM-L6-v2')
|
90 |
faiss_index, context_list = update_faiss_index()
|
91 |
|
92 |
+
# Gradio interface for chatbot
|
93 |
+
def chatbot(model_name, question):
|
94 |
relevant_contexts = retrieve_relevant_context(faiss_index, context_list, question)
|
95 |
user_input = f"question: {question} context: {' '.join(relevant_contexts)}"
|
96 |
+
response = query_huggingface(model_name, {"inputs": user_input})
|
97 |
+
response_text = response[0].get("generated_text", "Sorry, I couldn't generate a response.") if isinstance(response, list) else response.get("generated_text", "Sorry, I couldn't generate a response.")
|
98 |
return response_text
|
99 |
|
100 |
# File upload function
|
|
|
106 |
return "PDF content added to context."
|
107 |
|
108 |
# Gradio interface
|
109 |
+
iface = gr.Interface(
|
110 |
+
fn=chatbot,
|
111 |
+
inputs=[gr.inputs.Dropdown(["Meta-Llama-3-70B-Instruct", "Meta-Llama-3-8B-Instruct", "Gemma-2-27B-IT", "Gemma-2-27B"]), "text"],
|
112 |
+
outputs="text",
|
113 |
+
title="Storage Warehouse Customer Service Chatbot"
|
114 |
+
)
|
115 |
file_upload = gr.Interface(fn=upload_pdf, inputs="file", outputs="text", title="Upload PDF for Context")
|
116 |
|
117 |
app = gr.TabbedInterface([iface, file_upload], ["Chatbot", "Upload PDF"])
|
118 |
+
app.launch(share=True)
|