Spaces:
Sleeping
Sleeping
ariankhalfani
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
import os
|
2 |
import sqlite3
|
3 |
import requests
|
4 |
-
import
|
5 |
import faiss
|
6 |
import numpy as np
|
7 |
from sentence_transformers import SentenceTransformer
|
@@ -19,11 +19,11 @@ def query_huggingface(payload):
|
|
19 |
|
20 |
# Function to extract text from PDF
|
21 |
def extract_text_from_pdf(pdf_file):
|
22 |
-
pdf_reader = PyPDF2.PdfReader(pdf_file)
|
23 |
text = ""
|
24 |
-
|
25 |
-
|
26 |
-
|
|
|
27 |
return text
|
28 |
|
29 |
# Initialize SQLite database
|
@@ -60,6 +60,9 @@ def get_context():
|
|
60 |
# Function to create or update the FAISS index
|
61 |
def update_faiss_index():
|
62 |
contexts = get_context()
|
|
|
|
|
|
|
63 |
embeddings = model.encode(contexts, convert_to_tensor=True)
|
64 |
index = faiss.IndexFlatL2(embeddings.shape[1])
|
65 |
index.add(embeddings.cpu().numpy())
|
@@ -67,6 +70,9 @@ def update_faiss_index():
|
|
67 |
|
68 |
# Retrieve relevant context from the FAISS index
|
69 |
def retrieve_relevant_context(index, contexts, query, top_k=5):
|
|
|
|
|
|
|
70 |
query_embedding = model.encode([query], convert_to_tensor=True).cpu().numpy()
|
71 |
distances, indices = index.search(query_embedding, top_k)
|
72 |
relevant_contexts = [contexts[i] for i in indices[0]]
|
@@ -77,49 +83,25 @@ init_db()
|
|
77 |
model = SentenceTransformer('all-MiniLM-L6-v2')
|
78 |
faiss_index, context_list = update_faiss_index()
|
79 |
|
80 |
-
#
|
81 |
-
def
|
82 |
relevant_contexts = retrieve_relevant_context(faiss_index, context_list, question)
|
83 |
user_input = f"question: {question} context: {' '.join(relevant_contexts)}"
|
84 |
response = query_huggingface({"inputs": user_input})
|
85 |
response_text = response.get("generated_text", "Sorry, I couldn't generate a response.")
|
86 |
return response_text
|
87 |
|
88 |
-
#
|
89 |
-
def
|
90 |
-
context = extract_text_from_pdf(
|
91 |
-
add_context(
|
92 |
-
faiss_index, context_list
|
93 |
-
|
94 |
-
|
95 |
-
# Gradio UI
|
96 |
-
with gr.Blocks() as demo:
|
97 |
-
gr.Markdown("# Storage Warehouse Customer Service Chatbot")
|
98 |
-
|
99 |
-
with gr.Row():
|
100 |
-
with gr.Column(scale=4):
|
101 |
-
with gr.Box():
|
102 |
-
pdf_upload = gr.File(label="Upload PDF", file_types=["pdf"], interactive=True)
|
103 |
-
upload_button = gr.Button("Upload")
|
104 |
-
upload_status = gr.Textbox(label="Upload Status")
|
105 |
-
|
106 |
-
def handle_upload(files):
|
107 |
-
for file in files:
|
108 |
-
result = handle_pdf_upload(file.name)
|
109 |
-
upload_status.value = result
|
110 |
-
|
111 |
-
upload_button.click(fn=handle_upload, inputs=pdf_upload, outputs=upload_status)
|
112 |
-
|
113 |
-
with gr.Column(scale=8):
|
114 |
-
chatbot = gr.Chatbot(label="Chatbot")
|
115 |
-
question = gr.Textbox(label="Your question here:")
|
116 |
-
submit_button = gr.Button("Submit")
|
117 |
-
|
118 |
-
def handle_chat(user_input):
|
119 |
-
bot_response = chatbot_response(user_input)
|
120 |
-
return gr.Chatbot.update([[user_input, bot_response]])
|
121 |
|
122 |
-
|
|
|
|
|
123 |
|
124 |
-
|
125 |
-
|
|
|
1 |
import os
|
2 |
import sqlite3
|
3 |
import requests
|
4 |
+
import fitz # PyMuPDF
|
5 |
import faiss
|
6 |
import numpy as np
|
7 |
from sentence_transformers import SentenceTransformer
|
|
|
19 |
|
20 |
# Function to extract text from PDF
|
21 |
def extract_text_from_pdf(pdf_file):
|
|
|
22 |
text = ""
|
23 |
+
pdf_document = fitz.open(stream=pdf_file.read(), filetype="pdf")
|
24 |
+
for page_num in range(len(pdf_document)):
|
25 |
+
page = pdf_document.load_page(page_num)
|
26 |
+
text += page.get_text()
|
27 |
return text
|
28 |
|
29 |
# Initialize SQLite database
|
|
|
60 |
# Function to create or update the FAISS index
|
61 |
def update_faiss_index():
|
62 |
contexts = get_context()
|
63 |
+
if len(contexts) == 0:
|
64 |
+
return None, contexts
|
65 |
+
|
66 |
embeddings = model.encode(contexts, convert_to_tensor=True)
|
67 |
index = faiss.IndexFlatL2(embeddings.shape[1])
|
68 |
index.add(embeddings.cpu().numpy())
|
|
|
70 |
|
71 |
# Retrieve relevant context from the FAISS index
|
72 |
def retrieve_relevant_context(index, contexts, query, top_k=5):
|
73 |
+
if index is None or len(contexts) == 0:
|
74 |
+
return []
|
75 |
+
|
76 |
query_embedding = model.encode([query], convert_to_tensor=True).cpu().numpy()
|
77 |
distances, indices = index.search(query_embedding, top_k)
|
78 |
relevant_contexts = [contexts[i] for i in indices[0]]
|
|
|
83 |
model = SentenceTransformer('all-MiniLM-L6-v2')
|
84 |
faiss_index, context_list = update_faiss_index()
|
85 |
|
86 |
+
# Gradio interface
|
87 |
+
def chatbot(question):
|
88 |
relevant_contexts = retrieve_relevant_context(faiss_index, context_list, question)
|
89 |
user_input = f"question: {question} context: {' '.join(relevant_contexts)}"
|
90 |
response = query_huggingface({"inputs": user_input})
|
91 |
response_text = response.get("generated_text", "Sorry, I couldn't generate a response.")
|
92 |
return response_text
|
93 |
|
94 |
+
# File upload function
|
95 |
+
def upload_pdf(file):
|
96 |
+
context = extract_text_from_pdf(file)
|
97 |
+
add_context(file.name, context)
|
98 |
+
global faiss_index, context_list
|
99 |
+
faiss_index, context_list = update_faiss_index()
|
100 |
+
return "PDF content added to context."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
|
102 |
+
# Gradio interface
|
103 |
+
iface = gr.Interface(fn=chatbot, inputs="text", outputs="text", title="Storage Warehouse Customer Service Chatbot")
|
104 |
+
file_upload = gr.Interface(fn=upload_pdf, inputs="file", outputs="text", title="Upload PDF for Context")
|
105 |
|
106 |
+
app = gr.TabbedInterface([iface, file_upload], ["Chatbot", "Upload PDF"])
|
107 |
+
app.launch()
|