LLAMA / app.py
ariankhalfani's picture
Update app.py
4fe5e8e verified
from huggingface_hub import InferenceClient
import os
import sqlite3
import requests
import fitz # PyMuPDF
import faiss
import numpy as np
from sentence_transformers import SentenceTransformer
import gradio as gr
# Configure Hugging Face API URL and headers
model_name = "meta-llama/Meta-Llama-3.1-8B-Instruct"
huggingface_api_key = os.getenv("HUGGINGFACE_API_KEY")
headers = {"Authorization": f"Bearer {huggingface_api_key}"}
# Function to query Hugging Face model
def query_huggingface(payload):
response = requests.post(f"https://api-inference.huggingface.co/models/{model_name}", headers=headers, json=payload)
return response.json()
# Function to extract text from PDF
def extract_text_from_pdf(pdf_file):
text = ""
pdf_document = fitz.open(stream=pdf_file.read(), filetype="pdf")
for page_num in range(len(pdf_document)):
page = pdf_document.load_page(page_num)
text += page.get_text()
return text
# Initialize SQLite database
def init_db():
conn = sqlite3.connect('storage_warehouse.db')
c = conn.cursor()
c.execute('''
CREATE TABLE IF NOT EXISTS context (
id INTEGER PRIMARY KEY AUTOINCREMENT,
name TEXT,
content TEXT
)
''')
conn.commit()
conn.close()
# Add context to the database
def add_context(name, content):
conn = sqlite3.connect('storage_warehouse.db')
c = conn.cursor()
c.execute('INSERT INTO context (name, content) VALUES (?, ?)', (name, content))
conn.commit()
conn.close()
# Retrieve context from the database
def get_context():
conn = sqlite3.connect('storage_warehouse.db')
c = conn.cursor()
c.execute('SELECT content FROM context')
context = c.fetchall()
conn.close()
return [c[0] for c in context]
# Function to create or update the FAISS index
def update_faiss_index():
contexts = get_context()
if len(contexts) == 0:
return None, contexts
embeddings = model.encode(contexts, convert_to_tensor=True)
index = faiss.IndexFlatL2(embeddings.shape[1])
index.add(embeddings.cpu().numpy())
return index, contexts
# Retrieve relevant context from the FAISS index
def retrieve_relevant_context(index, contexts, query, top_k=5):
if index is None or len(contexts) == 0:
return []
query_embedding = model.encode([query], convert_to_tensor=True).cpu().numpy()
distances, indices = index.search(query_embedding, top_k)
relevant_contexts = [contexts[i] for i in indices[0]]
return relevant_contexts
# Initialize the database and FAISS model
init_db()
model = SentenceTransformer('all-MiniLM-L6-v2')
faiss_index, context_list = update_faiss_index()
# Gradio interface for chatbot
def chatbot(question):
relevant_contexts = retrieve_relevant_context(faiss_index, context_list, question)
user_input = f"question: {question} context: {' '.join(relevant_contexts)}"
response = query_huggingface({"inputs": user_input})
response_text = response[0].get("generated_text", "Sorry, I couldn't generate a response.") if isinstance(response, list) else response.get("generated_text", "Sorry, I couldn't generate a response.")
return response_text
# File upload function
def upload_pdf(file):
context = extract_text_from_pdf(file)
add_context(file.name, context)
global faiss_index, context_list
faiss_index, context_list = update_faiss_index()
return "PDF content added to context."
# Gradio interface
iface = gr.Interface(
fn=chatbot,
inputs=gr.Textbox(),
outputs=gr.Textbox(),
title="Storage Warehouse Customer Service Chatbot"
)
file_upload = gr.Interface(fn=upload_pdf, inputs=gr.File(), outputs=gr.Textbox(), title="Upload PDF for Context")
app = gr.TabbedInterface([iface, file_upload], ["Chatbot", "Upload PDF"])
app.launch(share=True)