Spaces:
Sleeping
Sleeping
import os | |
import requests | |
import streamlit as st | |
from PyPDF2 import PdfReader | |
# Get the Hugging Face API Token from environment variables | |
HF_API_TOKEN = os.getenv("HF_API_KEY") | |
if not HF_API_TOKEN: | |
raise ValueError("Hugging Face API Token is not set in the environment variables.") | |
# Hugging Face API URL and header for Gemma 27B-it model | |
GEMMA_9B_API_URL = "https://api-inference.huggingface.co/models/google/gemma-2-9b-it" | |
HEADERS = {"Authorization": f"Bearer {HF_API_TOKEN}"} | |
def query_model(api_url, payload): | |
response = requests.post(api_url, headers=HEADERS, json=payload) | |
if response.status_code == 200: | |
return response.json() | |
else: | |
raise ValueError(f"Request failed with status code {response.status_code}: {response.text}") | |
def extract_pdf_text(uploaded_file): | |
pdf_text = "" | |
pdf_reader = PdfReader(uploaded_file) | |
for page in pdf_reader.pages: | |
pdf_text += page.extract_text() | |
return pdf_text | |
# Streamlit app | |
st.set_page_config(page_title="Gemma 9B-it Chatbot Interface", layout="wide") | |
st.title("Gemma 9B-it Chatbot Interface") | |
st.write("Gemma 9B-it Chatbot Interface") | |
# Initialize session state for conversation and uploaded file | |
if "conversation" not in st.session_state: | |
st.session_state.conversation = [] | |
# File uploader for PDF | |
uploaded_file = st.file_uploader("Upload a PDF", type="pdf") | |
# Handle PDF upload and text extraction | |
if uploaded_file: | |
pdf_text = extract_pdf_text(uploaded_file) | |
st.write("### PDF Text Extracted:") | |
st.write(pdf_text) | |
# User input for question | |
question = st.text_input("Ask a question...", "") | |
# Handle user input and Gemma 27B-it model response | |
if st.button("Send") and question: | |
try: | |
with st.spinner("Waiting for the model to respond..."): | |
response = query_model(GEMMA_9B_API_URL, {"inputs": question}) | |
answer = response.get("generated_text", "No response") | |
st.write(f"**Gemma 9B-it:** {answer}") | |
st.session_state.conversation.append((question, answer)) | |
except ValueError as e: | |
st.error(str(e)) | |
# Custom CSS for chat bubbles | |
st.markdown( | |
""" | |
<style> | |
.chat-container { | |
display: flex; | |
flex-direction: column; | |
gap: 10px; | |
margin-top: 20px; | |
} | |
.user-message { | |
align-self: flex-end; | |
background-color: #dcf8c6; | |
padding: 10px 14px; | |
border-radius: 14px; | |
max-width: 80%; | |
} | |
.bot-message { | |
align-self: flex-start; | |
background-color: #fff; | |
padding: 10px 14px; | |
border-radius: 14px; | |
max-width: 80%; | |
} | |
</style> | |
""", | |
unsafe_allow_html=True | |
) | |
# Display the conversation | |
if st.session_state.conversation: | |
st.write('<div class="chat-container">', unsafe_allow_html=True) | |
for user_message, bot_message in st.session_state.conversation: | |
st.write(f'<div class="user-message">You: {user_message}</div>', unsafe_allow_html=True) | |
st.write(f'<div class="bot-message">Gemma 9B-it: {bot_message}</div>', unsafe_allow_html=True) | |
st.write('</div>', unsafe_allow_html=True) |