File size: 1,330 Bytes
b868159 7b1bd83 b868159 7b1bd83 e25ed3d 7b1bd83 f80e4ee 7b1bd83 2858f8a 7b1bd83 f80e4ee 7b1bd83 f80e4ee 7b1bd83 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 |
import gradio as gr
import torch
from transformers import pipeline
username = "ardneebwar" ## Complete your username
model_id = f"{username}/wav2vec2-animal-sounds-finetuned-hubert-finetuned-animals"
device = "cuda:0" if torch.cuda.is_available() else "cpu"
pipe = pipeline("audio-classification", model=model_id, device=device)
def classify_audio(filepath):
import time
start_time = time.time()
# Assuming `pipe` is your model pipeline for inference
preds = pipe(filepath)
outputs = {}
for p in preds:
outputs[p["label"]] = p["score"]
end_time = time.time()
prediction_time = end_time - start_time
return outputs, prediction_time
title = "🎵 Animal Sound Classifier"
description = """
Animal Sound Classifier model (Fine-tuned "ntu-spml/distilhubert") | Dataset: ESC-50 from Github (only the animal sounds) | Better to use audios 5 seconds long.
"""
filenames = ['cat.wav']
filenames = [f"./{f}" for f in filenames]
demo = gr.Interface(
fn=classify_audio,
inputs=gr.Audio(type="filepath", label="Upload your audio file"),
outputs=[gr.Label(label="Predicted Animal Sound"), gr.Number(label="Prediction time (s)")],
title=title,
description=description,
theme="huggingface",
examples=[("cat.wav")],
live=False
)
demo.launch() |