AuraSR-v2 / app.py
ardha27's picture
fix ui (#1)
82255f2 verified
raw
history blame
2.2 kB
import spaces
import gradio as gr
from gradio_imageslider import ImageSlider
from PIL import Image
import numpy as np
from aura_sr import AuraSR
import torch
import time
import spaces
# Force CPU usage
torch.set_default_tensor_type(torch.FloatTensor)
# Override torch.load to always use CPU
original_load = torch.load
torch.load = lambda *args, **kwargs: original_load(*args, **kwargs, map_location=torch.device('cpu'))
# Initialize the AuraSR model
aura_sr = AuraSR.from_pretrained("fal/AuraSR-v2")
# Restore original torch.load
torch.load = original_load
def process_image(input_image, scale_factor):
if input_image is None:
raise gr.Error("Please provide an image to upscale.")
start_time = time.time()
# Convert to PIL Image for resizing
pil_image = Image.fromarray(input_image)
if scale_factor == 2:
pil_image = pil_image.resize((int(pil_image.width * 0.5), int(pil_image.height * 0.5)), Image.LANCZOS)
elif scale_factor == 3:
pil_image = pil_image.resize((int(pil_image.width * 0.75), int(pil_image.height * 0.75)), Image.LANCZOS)
# Upscale the image using AuraSR
upscaled_image = process_image_on_gpu(pil_image)
# Convert result to numpy array if it's not already
result_array = np.array(upscaled_image)
end_time = time.time()
processing_time = end_time - start_time
return [input_image, result_array], f"Processing time: {processing_time:.2f} seconds"
@spaces.GPU
def process_image_on_gpu(pil_image):
try:
return aura_sr.upscale_4x(pil_image)
except Exception as e:
raise gr.Error(f"An error occurred during image upscaling: {str(e)}")
with gr.Blocks() as demo:
gr.Markdown("# Image Upscaler")
with gr.Row():
input_image = gr.Image(label="Input Image", type="numpy")
scale_factor = gr.Radio([2, 3, 4], label="Scale Factor", value=4)
with gr.Row():
image_slider = ImageSlider(label="Before/After")
upscale_button = gr.Button("Upscale")
processing_time_text = gr.Textbox(label="Processing Time")
upscale_button.click(fn=process_image, inputs=[input_image, scale_factor], outputs=[image_slider, processing_time_text])
demo.launch()