Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import torch
|
3 |
+
from transformers import AutoProcessor, PaliGemmaForConditionalGeneration
|
4 |
+
from PIL import Image
|
5 |
+
|
6 |
+
# Load the model and processor
|
7 |
+
model_id = "brucewayne0459/paligemma_derm"
|
8 |
+
processor = AutoProcessor.from_pretrained(model_id)
|
9 |
+
model = PaliGemmaForConditionalGeneration.from_pretrained(model_id, device_map={"": 0})
|
10 |
+
model.eval()
|
11 |
+
|
12 |
+
# Set device
|
13 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
14 |
+
model.to(device)
|
15 |
+
|
16 |
+
# Streamlit app
|
17 |
+
st.title("Skin Condition Identifier")
|
18 |
+
st.write("Upload an image and provide a text prompt to identify the skin condition.")
|
19 |
+
|
20 |
+
# File uploader for image
|
21 |
+
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
22 |
+
|
23 |
+
# Text input for prompt
|
24 |
+
input_text = st.text_input("Enter your prompt:", "Identify the skin condition?")
|
25 |
+
|
26 |
+
# Process and display the result when the button is clicked
|
27 |
+
if uploaded_file is not None and st.button("Analyze"):
|
28 |
+
try:
|
29 |
+
# Open the uploaded image
|
30 |
+
input_image = Image.open(uploaded_file).convert("RGB")
|
31 |
+
st.image(input_image, caption="Uploaded Image", use_column_width=True)
|
32 |
+
|
33 |
+
# Prepare inputs
|
34 |
+
inputs = processor(
|
35 |
+
text=input_text,
|
36 |
+
images=input_image,
|
37 |
+
return_tensors="pt",
|
38 |
+
padding="longest"
|
39 |
+
).to(device)
|
40 |
+
|
41 |
+
# Generate output
|
42 |
+
max_new_tokens = 50
|
43 |
+
with torch.no_grad():
|
44 |
+
outputs = model.generate(**inputs, max_new_tokens=max_new_tokens)
|
45 |
+
|
46 |
+
# Decode output
|
47 |
+
decoded_output = processor.decode(outputs[0], skip_special_tokens=True)
|
48 |
+
|
49 |
+
# Display result
|
50 |
+
st.success("Analysis Complete!")
|
51 |
+
st.write("**Model Output:**", decoded_output)
|
52 |
+
except Exception as e:
|
53 |
+
st.error(f"Error: {str(e)}")
|