Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -65,22 +65,24 @@ def log_comparison(model1_name: str, model2_name: str, question: str, answer1: s
|
|
65 |
except requests.RequestException as e:
|
66 |
print(f"Error sending log to server: {e}")
|
67 |
|
68 |
-
# Function to prepare input
|
69 |
def prepare_input(model_id: str, message: str, chat_history: List[Tuple[str, str]]):
|
70 |
tokenizer = tokenizers[model_id]
|
71 |
try:
|
|
|
72 |
inputs = tokenizer(
|
73 |
[x[1] for x in chat_history] + [message],
|
74 |
return_tensors="pt",
|
75 |
truncation=True,
|
76 |
padding=True,
|
77 |
max_length=MAX_INPUT_TOKEN_LENGTH,
|
|
|
78 |
)
|
79 |
except Exception as e:
|
80 |
print(f"Error preparing input for model {model_id}: {e}")
|
81 |
-
inputs = tokenizer([message], return_tensors="pt", padding=True, max_length=MAX_INPUT_TOKEN_LENGTH)
|
82 |
return inputs
|
83 |
|
|
|
84 |
# Function to generate responses from models
|
85 |
@spaces.GPU(duration=120)
|
86 |
def generate(
|
@@ -96,16 +98,26 @@ def generate(
|
|
96 |
|
97 |
inputs = prepare_input(model_id, message, chat_history)
|
98 |
input_ids = inputs.input_ids
|
|
|
99 |
|
100 |
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
|
101 |
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
|
|
|
102 |
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
input_ids = input_ids.to(model.device)
|
|
|
104 |
|
105 |
try:
|
106 |
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
|
107 |
generate_kwargs = dict(
|
108 |
input_ids=input_ids,
|
|
|
109 |
streamer=streamer,
|
110 |
max_new_tokens=max_new_tokens,
|
111 |
do_sample=True,
|
@@ -125,6 +137,7 @@ def generate(
|
|
125 |
print(f"Error generating response from model {model_id}: {e}")
|
126 |
yield "Error generating response."
|
127 |
|
|
|
128 |
# Function to compare two models
|
129 |
def compare_models(
|
130 |
model1_name: str,
|
|
|
65 |
except requests.RequestException as e:
|
66 |
print(f"Error sending log to server: {e}")
|
67 |
|
|
|
68 |
def prepare_input(model_id: str, message: str, chat_history: List[Tuple[str, str]]):
|
69 |
tokenizer = tokenizers[model_id]
|
70 |
try:
|
71 |
+
# Prepare inputs for the model
|
72 |
inputs = tokenizer(
|
73 |
[x[1] for x in chat_history] + [message],
|
74 |
return_tensors="pt",
|
75 |
truncation=True,
|
76 |
padding=True,
|
77 |
max_length=MAX_INPUT_TOKEN_LENGTH,
|
78 |
+
return_attention_mask=True # Include the attention_mask
|
79 |
)
|
80 |
except Exception as e:
|
81 |
print(f"Error preparing input for model {model_id}: {e}")
|
82 |
+
inputs = tokenizer([message], return_tensors="pt", padding=True, max_length=MAX_INPUT_TOKEN_LENGTH, return_attention_mask=True)
|
83 |
return inputs
|
84 |
|
85 |
+
|
86 |
# Function to generate responses from models
|
87 |
@spaces.GPU(duration=120)
|
88 |
def generate(
|
|
|
98 |
|
99 |
inputs = prepare_input(model_id, message, chat_history)
|
100 |
input_ids = inputs.input_ids
|
101 |
+
attention_mask = inputs.attention_mask # Get attention_mask
|
102 |
|
103 |
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
|
104 |
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
|
105 |
+
attention_mask = attention_mask[:, -MAX_INPUT_TOKEN_LENGTH:]
|
106 |
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
|
107 |
+
|
108 |
+
# Ensure batch size is 1
|
109 |
+
if input_ids.shape[0] != 1:
|
110 |
+
input_ids = input_ids[:1]
|
111 |
+
attention_mask = attention_mask[:1]
|
112 |
+
|
113 |
input_ids = input_ids.to(model.device)
|
114 |
+
attention_mask = attention_mask.to(model.device) # Move to the same device as input_ids
|
115 |
|
116 |
try:
|
117 |
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
|
118 |
generate_kwargs = dict(
|
119 |
input_ids=input_ids,
|
120 |
+
attention_mask=attention_mask, # Pass the attention_mask
|
121 |
streamer=streamer,
|
122 |
max_new_tokens=max_new_tokens,
|
123 |
do_sample=True,
|
|
|
137 |
print(f"Error generating response from model {model_id}: {e}")
|
138 |
yield "Error generating response."
|
139 |
|
140 |
+
|
141 |
# Function to compare two models
|
142 |
def compare_models(
|
143 |
model1_name: str,
|