File size: 13,337 Bytes
061239f
 
 
 
 
 
 
e6dd180
 
061239f
 
 
 
 
 
 
 
 
 
 
 
e6dd180
061239f
 
 
 
 
 
 
 
e6dd180
 
061239f
 
 
 
 
 
 
 
 
 
e6dd180
 
 
061239f
e6dd180
 
 
 
 
061239f
e6dd180
 
 
 
 
 
061239f
e6dd180
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
061239f
 
e6dd180
061239f
83a5cfb
 
061239f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e6dd180
061239f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
83a5cfb
 
061239f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e6dd180
 
 
061239f
 
 
83a5cfb
 
 
061239f
83a5cfb
 
 
 
 
061239f
83a5cfb
e6dd180
 
 
 
83a5cfb
061239f
 
 
 
 
 
 
 
 
 
83a5cfb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
061239f
 
 
83a5cfb
 
 
 
e6dd180
 
 
83a5cfb
e6dd180
83a5cfb
 
061239f
83a5cfb
 
 
061239f
83a5cfb
 
 
 
 
 
 
 
 
061239f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e6dd180
 
 
 
 
 
 
 
 
 
 
061239f
 
 
 
e6dd180
061239f
 
 
e6dd180
061239f
e6dd180
061239f
e6dd180
061239f
 
e6dd180
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
061239f
 
 
 
 
 
 
 
 
 
 
e6dd180
061239f
 
 
 
 
 
 
83a5cfb
061239f
 
83a5cfb
 
 
061239f
 
 
 
 
 
 
 
 
 
 
 
83a5cfb
061239f
 
 
 
 
 
 
 
 
 
 
 
 
e6dd180
061239f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
83a5cfb
 
061239f
 
83a5cfb
061239f
83a5cfb
 
061239f
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
import streamlit as st
import os
import datetime as DT
import pytz
import time
import json
import re
import random
import string
from transformers import AutoTokenizer
from tools import toolsInfo

from dotenv import load_dotenv
load_dotenv()

useGpt4 = os.environ.get("USE_GPT_4") == "1"

if useGpt4:
    from openai import OpenAI
    client = OpenAI(api_key=os.environ.get("OPENAI_API_KEY"))
    MODEL = "gpt-4o-mini"
    TOOLS_MODEL = "gpt-4o-mini"
    MAX_CONTEXT = 128000
    tokenizer = AutoTokenizer.from_pretrained("Xenova/gpt-4o")
else:
    from groq import Groq
    client = Groq(
        api_key=os.environ.get("GROQ_API_KEY"),
    )
    MODEL = "llama-3.1-70b-versatile"
    # MODEL = "llama3-groq-70b-8192-tool-use-preview"
    TOOLS_MODEL = "llama3-groq-70b-8192-tool-use-preview"
    MAX_CONTEXT = 8000
    tokenizer = AutoTokenizer.from_pretrained("Xenova/Meta-Llama-3.1-Tokenizer")


def countTokens(text):
    text = str(text)
    tokens = tokenizer.encode(text, add_special_tokens=False)
    return len(tokens)


SYSTEM_MSG = """
You are a personalized email generator for cold outreach. You take the user through the below workflow.
Keep your questions crisp. Ask only one question at a time.

# You ask about the purpose of sending email.
Give well-formatted numbered options to choose from for the email purpose.
Group the options by category as described below.
Give numbers only to the options and not categories.
Give a line break after every category name.

##### Category: Acquiring Customers
- Lead Generation (spark interest in possible customers)
- Sales Outreach (directly ask the decision-makers)
- Partnership and Collaboration (build mutually beneficial relationships)
- Event Promotion (invite people to webinars, conferences, or other events)
- Case study or testimonial requests (ask satisfied customers for testimonials)

##### Category: Learning and Connecting
- Networking (establish connections with industry experts)
- Market Research (gather information about target audiences or industries)
- Career Advice (seek guidance from experienced professionals)

##### Category: Jobs and Hiring
- Job Application (apply for job openings)
- Job Referrals (ask for referrals or recommendations)
- Recruitment (reach out to potential candidates)


# You then ask sender (user) details. Whatever could be relevant for this type of email
# You ask for recipient's Industry, if it's required for this type of email
# You ask for recipient's Role in the company, if it's required for this type of email
# You ask for any other specific details required to draft this type of mail
# Once all these details are received, you save them in a Google Sheet

# You then check with the user if they can see details in the sheet.

# Once the user ackowledges, you move to the next phase of email generation.
Based on the above info, you draft 2 very different variations of email and check the user which one they're liking more.
Keep the email body in sections separated by divider "-----".
Give numbered options at the end to choose from.
Ask them if they want to finalize it. If they don't finalize, repeat doing it till the user finalizes on one.
Check with them what they would like to change in the variation.

# Once the mail is finalized. You ask the user for all the missing placeholder values to write the final mail.

# Once the placeholder values are available in the final email, you ask for the recipient email ID.

# Once you have the final mail with placeholder values and recipient exact email ID, you send the email to this id.
Dont send email until you have received a valid email from user.

# You congratulate the user and ask if he would like to save this email as a template. If he agrees, save this template in Google Sheet.

# Repeat the process for more profiles and recipients.
"""


USER_ICON = "icons/man.png"
ASSISTANT_ICON = "icons/magic-wand-1.png"
TOOL_ICON = "icons/check.png"

IMAGE_LOADER = "icons/ripple.svg"
TEXT_LOADER = "icons/balls.svg"
START_MSG = "Let's start 😊"

ROLE_TO_AVATAR = {
    "user": USER_ICON,
    "assistant": ASSISTANT_ICON,
    "tool": TOOL_ICON,
}

st.set_page_config(
    page_title="EmailGenie",
    page_icon=ASSISTANT_ICON,
)
ipAddress = st.context.headers.get("x-forwarded-for")


def __nowInIST() -> DT.datetime:
    return DT.datetime.now(pytz.timezone("Asia/Kolkata"))


def pprint(log: str):
    now = __nowInIST()
    now = now.strftime("%Y-%m-%d %H:%M:%S")
    print(f"[{now}] [{ipAddress}] {log}")


pprint("\n")

st.markdown(
    """
    <style>
    @keyframes blinker {
        0% {
            opacity: 1;
        }
        50% {
            opacity: 0.2;
        }
        100% {
            opacity: 1;
        }
    }

    .blinking {
        animation: blinker 3s ease-out infinite;
    }

    .code {
        color: green;
        border-radius: 3px;
        padding: 2px 4px; /* Padding around the text */
        font-family: 'Courier New', Courier, monospace; /* Monospace font */
    }

    </style>
    """,
    unsafe_allow_html=True
)


def __isInvalidResponse(response: str):
    # new line followed by small case char
    if len(re.findall(r'\n[a-z]', response)) > 3:
        return True

    # lot of repeating words
    if len(re.findall(r'\b(\w+)(\s+\1){2,}\b', response)) > 1:
        return True

    # lots of paragraphs
    if len(re.findall(r'\n\n', response)) > 25:
        return True


def __resetButtonState():
    st.session_state["buttonValue"] = ""


def __setStartMsg(msg):
    st.session_state.startMsg = msg


if "chatHistory" not in st.session_state:
    st.session_state.chatHistory = []

if "messages" not in st.session_state:
    st.session_state.messages = []

if "buttonValue" not in st.session_state:
    __resetButtonState()

if "startMsg" not in st.session_state:
    st.session_state.startMsg = ""

st.session_state.toolResponseDisplay = {}


def __getMessages():
    def getContextSize():
        currContextSize = countTokens(SYSTEM_MSG) + countTokens(st.session_state.messages) + 100
        pprint(f"{currContextSize=}")
        return currContextSize

    while getContextSize() > MAX_CONTEXT:
        pprint("Context size exceeded, removing first message")
        st.session_state.messages.pop(0)

    return st.session_state.messages


tools = [
    toolsInfo["saveProfileDetailsInGSheet"]["schema"],
    toolsInfo["saveTemplateInGSheet"]["schema"],
    toolsInfo["sendEmail"]["schema"],
]


def __showToolResponse(toolResponseDisplay: dict):
    msg = toolResponseDisplay.get("text")
    icon = toolResponseDisplay.get("icon")

    col1, col2 = st.columns([1, 20])
    with col1:
        st.image(
            icon or TOOL_ICON,
            width=30
        )
    with col2:
        if "`" not in msg:
            st.markdown(f"`{msg}`")
        else:
            st.markdown(msg)


def __process_stream_chunk(chunk):
    delta = chunk.choices[0].delta
    if delta.content:
        return delta.content
    elif delta.tool_calls:
        return delta.tool_calls[0]
    return None


def __addToolCallToMsgs(toolCall: dict):
    st.session_state.messages.append(
        {
            "role": "assistant",
            "tool_calls": [
                {
                    "id": toolCall.id,
                    "function": {
                        "name": toolCall.function.name,
                        "arguments": toolCall.function.arguments,
                    },
                    "type": toolCall.type,
                }
            ],
        }
    )


def __processToolCalls(toolCalls):
    for toolCall in toolCalls:
        functionName = toolCall.function.name
        functionToCall = toolsInfo[functionName]["func"]
        functionArgsStr = toolCall.function.arguments
        pprint(f"{functionName=} | {functionArgsStr=}")
        functionArgs = json.loads(functionArgsStr)
        functionResult = functionToCall(**functionArgs)
        functionResponse = functionResult.get("response")
        responseDisplay = functionResult.get("display")
        pprint(f"{functionResponse=}")

        if responseDisplay:
            __showToolResponse(responseDisplay)
            st.session_state.toolResponseDisplay = responseDisplay

        __addToolCallToMsgs(toolCall)
        st.session_state.messages.append(
            {
                "role": "tool",
                "tool_call_id": toolCall.id,
                "name": functionName,
                "content": functionResponse,
            }
        )


def __dedupeToolCalls(toolCalls: list):
    toolCallsDict = {}
    for toolCall in toolCalls:
        toolCallsDict[toolCall.function.name] = toolCall
    dedupedToolCalls = list(toolCallsDict.values())

    if len(toolCalls) != len(dedupedToolCalls):
        pprint("Deduped tool calls!")
        pprint(f"{toolCalls=} -> {dedupedToolCalls=}")

    return dedupedToolCalls


def __getRandomToolId():
    return ''.join(
        random.choices(
            string.ascii_lowercase + string.digits,
            k=4
        )
    )


def predict(model: str = None):
    model = model or MODEL

    messagesFormatted = [{"role": "system", "content": SYSTEM_MSG}]
    messagesFormatted.extend(__getMessages())
    contextSize = countTokens(messagesFormatted)
    pprint(f"{contextSize=} | {model}")
    pprint(f"{messagesFormatted=}")

    response = client.chat.completions.create(
        model=model,
        messages=messagesFormatted,
        temperature=0.5,
        max_tokens=4000,
        stream=False,
        tools=tools
    )

    responseMessage = response.choices[0].message
    # pprint(f"{responseMessage=}")
    responseContent = responseMessage.content
    # pprint(f"{responseContent=}")

    if responseContent and '<function=' in responseContent:
        pprint("Switching to TOOLS_MODEL")
        return predict(TOOLS_MODEL)

    # if responseContent and responseContent.startswith('<function='):
    #     function_match = re.match(r'<function=(\w+)>(.*?)</+function>', responseContent)
    #     if function_match:
    #         function_name, function_args = function_match.groups()
    #         toolCalls = [
    #             {
    #                 "id": __getRandomToolId(),
    #                 "type": "function",
    #                 "function": {
    #                     "name": function_name,
    #                     "arguments": function_args
    #                 }
    #             }
    #         ]
    #         responseContent = None  # Set content to None as it's a function call
    #     else:
    #         toolCalls = None
    # else:
    #     toolCalls = responseMessage.tool_calls

    if responseContent:
        yield responseContent
    toolCalls = responseMessage.tool_calls
    # pprint(f"{toolCalls=}")

    if toolCalls:
        pprint(f"{toolCalls=}")
        toolCalls = __dedupeToolCalls(toolCalls)
        try:
            __processToolCalls(toolCalls)
            return predict()
        except Exception as e:
            pprint(e)


st.title("EmailGenie πŸ“§πŸ§žβ€β™‚οΈ")
if not (st.session_state["buttonValue"] or st.session_state["startMsg"]):
    st.button(START_MSG, on_click=lambda: __setStartMsg(START_MSG))

for chat in st.session_state.chatHistory:
    role = chat["role"]
    content = chat["content"]
    imagePath = chat.get("image")
    toolResponseDisplay = chat.get("toolResponseDisplay")
    avatar = ROLE_TO_AVATAR[role]
    with st.chat_message(role, avatar=avatar):
        st.markdown(content)
        if toolResponseDisplay:
            __showToolResponse(toolResponseDisplay)

        if imagePath:
            st.image(imagePath)

if prompt := (st.chat_input() or st.session_state["buttonValue"] or st.session_state["startMsg"]):
    __resetButtonState()
    __setStartMsg("")

    with st.chat_message("user", avatar=USER_ICON):
        st.markdown(prompt)
    pprint(f"{prompt=}")
    st.session_state.chatHistory.append({"role": "user", "content": prompt })
    st.session_state.messages.append({"role": "user", "content": prompt })

    with st.chat_message("assistant", avatar=ASSISTANT_ICON):
        responseContainer = st.empty()

        def __printAndGetResponse():
            response = ""
            # responseContainer.markdown(".....")
            responseContainer.image(TEXT_LOADER)
            responseGenerator = predict()

            for chunk in responseGenerator:
                response += chunk
                if __isInvalidResponse(response):
                    pprint(f"Invalid_{response=}")
                    return
                responseContainer.markdown(response)

            return response

        response = __printAndGetResponse()
        while not response:
            pprint("Empty response. Retrying..")
            time.sleep(0.5)
            response = __printAndGetResponse()

        pprint(f"{response=}")

        def selectButton(optionLabel):
            st.session_state["buttonValue"] = optionLabel
            pprint(f"Selected: {optionLabel}")

        toolResponseDisplay = st.session_state.toolResponseDisplay
        st.session_state.chatHistory.append({
            "role": "assistant",
            "content": response,
            "toolResponseDisplay": toolResponseDisplay
        })

        st.session_state.messages.append({
            "role": "assistant",
            "content": response,
        })