File size: 12,580 Bytes
061239f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
import streamlit as st
import os
import datetime as DT
import pytz
import time
import json
import re
from typing import List
from transformers import AutoTokenizer
from gradio_client import Client
from tools import toolsInfo

from dotenv import load_dotenv
load_dotenv()

useGpt4 = os.environ.get("USE_GPT_4") == "1"

if useGpt4:
    from openai import OpenAI
    client = OpenAI(api_key=os.environ.get("OPENAI_API_KEY"))
    MODEL = "gpt-4o-mini"
    MAX_CONTEXT = 128000
    tokenizer = AutoTokenizer.from_pretrained("Xenova/gpt-4o")
else:
    from groq import Groq
    client = Groq(
        api_key=os.environ.get("GROQ_API_KEY"),
    )
    MODEL = "llama-3.1-70b-versatile"
    MODEL = "llama3-groq-70b-8192-tool-use-preview"
    MAX_CONTEXT = 8000
    tokenizer = AutoTokenizer.from_pretrained("Xenova/Meta-Llama-3.1-Tokenizer")


def countTokens(text):
    text = str(text)
    tokens = tokenizer.encode(text, add_special_tokens=False)
    return len(tokens)


SYSTEM_MSG = f"""
You are a personalized email generator for cold outreach. You take the user through a workflow. Step by step.

- You ask for industry of the recipient
- His/her role
- More details about the recipient

Highlight the exact entity you're requesting for.
Once collected, you store these info in a Google Sheet

"""

USER_ICON = "icons/man.png"
ASSISTANT_ICON = "icons/magic-wand(1).png"
TOOL_ICON = "icons/completed-task.png"

IMAGE_LOADER = "icons/ripple.svg"
TEXT_LOADER = "icons/balls.svg"
START_MSG = "Let's start 😊"

ROLE_TO_AVATAR = {
    "user": USER_ICON,
    "assistant": ASSISTANT_ICON,
    "tool": TOOL_ICON,
}

st.set_page_config(
    page_title="EmailGenie",
    page_icon=ASSISTANT_ICON,
)
ipAddress = st.context.headers.get("x-forwarded-for")


def __nowInIST() -> DT.datetime:
    return DT.datetime.now(pytz.timezone("Asia/Kolkata"))


def pprint(log: str):
    now = __nowInIST()
    now = now.strftime("%Y-%m-%d %H:%M:%S")
    print(f"[{now}] [{ipAddress}] {log}")


pprint("\n")

st.markdown(
    """
    <style>
    @keyframes blinker {
        0% {
            opacity: 1;
        }
        50% {
            opacity: 0.2;
        }
        100% {
            opacity: 1;
        }
    }

    .blinking {
        animation: blinker 3s ease-out infinite;
    }

    .code {
        color: green;
        border-radius: 3px;
        padding: 2px 4px; /* Padding around the text */
        font-family: 'Courier New', Courier, monospace; /* Monospace font */
    }

    </style>
    """,
    unsafe_allow_html=True
)


def __isInvalidResponse(response: str):
    # new line followed by small case char
    if len(re.findall(r'\n[a-z]', response)) > 3:
        return True

    # lot of repeating words
    if len(re.findall(r'\b(\w+)(\s+\1){2,}\b', response)) > 1:
        return True

    # lots of paragraphs
    if len(re.findall(r'\n\n', response)) > 15:
        return True


def __matchingKeywordsCount(keywords: List[str], text: str):
    return sum([
        1 if keyword in text else 0
        for keyword in keywords
    ])


def __isStringNumber(s: str) -> bool:
    try:
        float(s)
        return True
    except ValueError:
        return False


def __resetButtonState():
    st.session_state["buttonValue"] = ""


def __setStartMsg(msg):
    st.session_state.startMsg = msg


if "chatHistory" not in st.session_state:
    st.session_state.chatHistory = []

if "messages" not in st.session_state:
    st.session_state.messages = []

if "buttonValue" not in st.session_state:
    __resetButtonState()

if "startMsg" not in st.session_state:
    st.session_state.startMsg = ""


def __getMessages():
    def getContextSize():
        currContextSize = countTokens(SYSTEM_MSG) + countTokens(st.session_state.messages) + 100
        pprint(f"{currContextSize=}")
        return currContextSize

    while getContextSize() > MAX_CONTEXT:
        pprint("Context size exceeded, removing first message")
        st.session_state.messages.pop(0)

    return st.session_state.messages


tools = [
    toolsInfo["saveInGSheet"]["schema"]
]


def __showTaskStatus(msg):
    taskContainer = st.container()
    taskContainer.image(TOOL_ICON, width=30)
    taskContainer.markdown(
        f"""
        <div class='code'>
        {msg}
        </div>
        """,
        unsafe_allow_html=True
    )


def __processToolCalls(tool_calls):
    for toolCall in tool_calls:
        functionName = toolCall.function.name
        functionToCall = toolsInfo[functionName]["func"]
        functionArgs = json.loads(toolCall.function.arguments)
        functionResult = functionToCall(**functionArgs)
        functionResponse = functionResult["response"]
        shouldShow = functionResult["shouldShow"]
        pprint(f"{functionResponse=}")

        if shouldShow:
            st.session_state.chatHistory.append(
                {
                    "role": "tool",
                    "content": functionResponse,
                }
            )
           
            __showTaskStatus(functionResponse)

        st.session_state.messages.append(
            {
                "role": "tool",
                "tool_call_id": toolCall.id,
                "name": functionName,
                "content": functionResponse,
            }
        )

def __process_stream_chunk(chunk):
    delta = chunk.choices[0].delta
    if delta.content:
        return delta.content
    elif delta.tool_calls:
        return delta.tool_calls[0]
    return None


def __addToolCallsToMsgs(toolCalls):
    st.session_state.messages.append(
        {
            "role": "assistant",
            "tool_calls": [
                {
                    "id": toolCall.id,
                    "function": {
                        "name": toolCall.function.name,
                        "arguments": toolCall.function.arguments,
                    },
                    "type": toolCall.type,
                }
                for toolCall in toolCalls
            ],
        }
    )

def __add_tool_call(tool_call):
    st.session_state.messages.append({
        "role": "assistant",
        "tool_calls": [{
            "id": tool_call.id,
            "function": {
                "name": tool_call.function.name,
                "arguments": tool_call.function.arguments,
            },
            "type": tool_call.type,
        }]
    })

def predict1():
    shouldStream = True

    messagesFormatted = [{"role": "system", "content": SYSTEM_MSG}]
    messagesFormatted.extend(__getMessages())
    contextSize = countTokens(messagesFormatted)
    pprint(f"{contextSize=} | {MODEL}")

    response = client.chat.completions.create(
        model=MODEL,
        messages=messagesFormatted,
        temperature=0.8,
        max_tokens=4000,
        stream=shouldStream,
        tools=tools
    )

    content = ""
    tool_call = None

    for chunk in response:
        chunk_content = __process_stream_chunk(chunk)
        if isinstance(chunk_content, str):
            content += chunk_content
            yield chunk_content
        elif chunk_content:
            if not tool_call:
                tool_call = chunk_content
            else:
                tool_call.function.arguments += chunk_content.function.arguments

    if tool_call:
        pprint(f"{tool_call=}")

        __addToolCallsToMsgs([tool_call])
        try:
            __processToolCalls([tool_call])
            return predict()
        except Exception as e:
            pprint(e)


def __dedupeToolCalls(toolCalls: list):
    toolCallsDict = {}
    for toolCall in toolCalls:
        toolCallsDict[toolCall.function.name] = toolCall
    dedupedToolCalls = list(toolCallsDict.values())

    if len(toolCalls) != len(dedupedToolCalls):
        pprint("Deduped tool calls!")
        pprint(f"{toolCalls=} -> {dedupedToolCalls=}")

    return dedupedToolCalls


def predict():
    shouldStream = False

    messagesFormatted = [{"role": "system", "content": SYSTEM_MSG}]
    messagesFormatted.extend(__getMessages())
    contextSize = countTokens(messagesFormatted)
    pprint(f"{contextSize=} | {MODEL}")
    pprint(f"{messagesFormatted=}")

    response = client.chat.completions.create(
        model=MODEL,
        messages=messagesFormatted,
        temperature=0.8,
        max_tokens=4000,
        stream=shouldStream,
        tools=tools
    )
    # pprint(f"llmResponse: {response}")

    if shouldStream:
        content = ""
        toolCall = None

        for chunk in response:
            chunkContent = __process_stream_chunk(chunk)
            if isinstance(chunkContent, str):
                content += chunkContent
                yield chunkContent
            elif chunkContent:
                if not toolCall:
                    toolCall = chunkContent
                else:
                    toolCall.function.arguments += chunkContent.function.arguments

        toolCalls = [toolCall] if toolCall else []
    else:
        responseMessage = response.choices[0].message
        # pprint(f"{responseMessage=}")
        responseContent = responseMessage.content
        pprint(f"{responseContent=}")
        if responseContent:
            yield responseContent
        toolCalls = responseMessage.tool_calls
        # pprint(f"{toolCalls=}")

    if toolCalls:
        pprint(f"{toolCalls=}")
        toolCalls = __dedupeToolCalls(toolCalls)
        __addToolCallsToMsgs(toolCalls)
        try:
            __processToolCalls(toolCalls)
            return predict()
        except Exception as e:
            pprint(e)


st.title("EmailGenie πŸ’Œ")
if not (st.session_state["buttonValue"] or st.session_state["startMsg"]):
    st.button(START_MSG, on_click=lambda: __setStartMsg(START_MSG))

for chat in st.session_state.chatHistory:
    role = chat["role"]
    content = chat["content"]
    imagePath = chat.get("image")
    avatar = ROLE_TO_AVATAR[role]
    with st.chat_message(role, avatar=avatar):
        if role == "tool":
            st.markdown(
                f"""
                <div class='code'>
                {content}
                </div>
                """,
                unsafe_allow_html=True
            )
        else:
            st.markdown(content)

        if imagePath:
            st.image(imagePath)

if prompt := (st.chat_input() or st.session_state["buttonValue"] or st.session_state["startMsg"]):
    __resetButtonState()
    __setStartMsg("")

    with st.chat_message("user", avatar=USER_ICON):
        st.markdown(prompt)
    pprint(f"{prompt=}")
    st.session_state.messages.append({"role": "user", "content": prompt })
    st.session_state.chatHistory.append({"role": "user", "content": prompt })

    with st.chat_message("assistant", avatar=ASSISTANT_ICON):
        responseContainer = st.empty()

        def __printAndGetResponse():
            response = ""
            # responseContainer.markdown(".....")
            responseContainer.image(TEXT_LOADER)
            responseGenerator = predict()

            for chunk in responseGenerator:
                response += chunk
                if __isInvalidResponse(response):
                    pprint(f"{response=}")
                    return
                responseContainer.markdown(response)

            return response

        response = __printAndGetResponse()
        while not response:
            pprint("Empty response. Retrying..")
            time.sleep(0.5)
            response = __printAndGetResponse()

        pprint(f"{response=}")

        def selectButton(optionLabel):
            st.session_state["buttonValue"] = optionLabel
            pprint(f"Selected: {optionLabel}")

        # responseParts = response.split(JSON_SEPARATOR)

        # jsonStr = None
        # if len(responseParts) > 1:
        #     [response, jsonStr] = responseParts

        # if jsonStr:
        #     try:
        #         json.loads(jsonStr)
        #         jsonObj = json.loads(jsonStr)
        #         options = jsonObj["options"]

        #         for option in options:
        #             st.button(
        #                 option["label"],
        #                 key=option["id"],
        #                 on_click=lambda label=option["label"]: selectButton(label)
        #             )
        #         # st.code(jsonStr, language="json")
        #     except Exception as e:
        #         pprint(e)

        st.session_state.messages.append({
            "role": "assistant",
            "content": response,
        })
        st.session_state.chatHistory.append({
            "role": "assistant",
            "content": response,
        })