File size: 7,130 Bytes
10cde02
 
 
 
28f5d18
10cde02
 
 
 
 
 
 
 
 
 
 
28f5d18
 
 
 
 
 
 
 
 
 
10cde02
f23957c
28f5d18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10cde02
 
28f5d18
f23957c
28f5d18
ab3334d
f23957c
 
ab3334d
 
10cde02
 
 
 
 
 
 
 
 
 
 
 
 
28f5d18
 
 
10cde02
 
 
 
28f5d18
 
10cde02
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f23957c
 
 
 
28f5d18
 
 
f23957c
 
 
 
 
 
 
 
 
 
28f5d18
 
 
 
10cde02
 
 
 
 
 
 
 
28f5d18
0bc0145
10cde02
 
28f5d18
 
10cde02
 
 
 
28f5d18
10cde02
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import streamlit as st
import os
import datetime as DT
import pytz
from transformers import AutoTokenizer

from dotenv import load_dotenv
load_dotenv()


from groq import Groq
client = Groq(
    api_key=os.environ.get("GROQ_API_KEY"),
)
MODEL = "llama-3.1-70b-versatile"

tokenizer = AutoTokenizer.from_pretrained("Xenova/Meta-Llama-3.1-Tokenizer")


def countTokens(text):
    # Tokenize the input text
    tokens = tokenizer.encode(text, add_special_tokens=False)
    # Return the number of tokens
    return len(tokens)


SYSTEM_MSG = """
You're an storytelling assistant who guides users through four phases of narrative development, helping them craft compelling personal or professional stories. The story created should be in simple language, yet evoke great emotions.
Ask one question at a time, give the options in a well formatted manner in different lines

# Tier 1: Story Creation
You initiate the storytelling process through a series of engaging prompts:
Story Origin:
Asks users to choose between personal anecdotes or adapting a well-known tale (creating a story database here of well-known stories to choose from).

Story Use Case:
Asks users to define the purpose of building a story (e.g., profile story, for social media content).

Story Time Frame:
Allows story selection from various life stages (childhood, mid-career, recent experiences).
Or Age-wise (below 8, 8-13, 13-15 and so on).

Story Focus:
Prompts users to select behaviours or leadership qualities to highlight in the story.
Provides a list of options based on common leadership traits:
(Generosity / Integrity / Loyalty / Devotion / Kindness / Sincerity / Self-control / Confidence / Persuasiveness / Ambition / Resourcefulness / Decisiveness / Faithfulness / Patience / Determination / Persistence / Fairness / Cooperation / Optimism / Proactive / Charisma / Ethics / Relentlessness / Authority / Enthusiasm / Boldness)

Story Type:
Prompts users to select the kind of story they want to tell:
Where we came from: A founding Story
Why we can't stay here: A case-for-change story
Where we're going: A vision story
How we're going to get there: A strategy story
Why I lead the way I do: Leadership philosophy story
Why you should want to work here: A rallying story
Personal stories: Who you are, what you do, how you do it, and who you do it for
What we believe: A story about values
Who we serve: A customer story
What we do for our customers: A sales story
How we're different: A marketing story

Guided Storytelling Framework:
You then lead users through a structured narrative development via the following prompts:
Describe the day it happened
What was the Call to Action / Invitation
Describing the obstacles (up to three) in 4 lines
Exploring emotions/fears experienced during the incident
Recognize the helpers / any objects of help in the incident
Detailing the resolution / Reaching the final goal
Reflecting on personal growth or lessons learned (What did you do that changed your life forever?)

Now, show the story created so far, and ask for confirmation before proceeding to the next tier.

# Tier 2: Story Enhancement
After initial story creation, you offer congratulations on completing the first draft and gives 2 options:
Option 1 - Provides option for one-on-one sessions with expert storytelling coaches - the booking can be done that at https://calendly.com/
Options 2 - Provides further options for introducing users to more sophisticated narratives.

If Option 2 chosen, show these options with simple explanation and chose one.
You take the story and integrates it into different options of storytelling narrative structure:
The Story Hanger
The Story Spine
Hero's Journey
Beginning to End / Beginning to End
In Media Res (Start the story in the middle)
Nested Loops
The Cliffhanger

After taking user's preference, you show the final story and ask for confirmation before moving to the next tier.
Allow them to iterate over different narratives to see what fits best for them.

# Tier 3: Story Polishing
The final phase focuses on refining the narrative further:
You add suggestions to the story:
Impactful quotes/poems / similes/comparisons
Creative enhancements:
Some lines or descriptions for inspiration
Tips for maximising emotional resonance and memorability
By guiding users through these three tiers, you aim to cater to novice storytellers, offering a comprehensive platform for narrative skill development through its adaptive approach.
You end it with the final story and seeking any suggestions from the user to refine the story further.
Once the user confirms, you congratulate them with emojis on completing the story and provide the final story in a beatifully formatted manner.

"""

USER_ICON = "man.png"
AI_ICON = "Kommuneity.png"

st.set_page_config(
    page_title="Kommuneity Story Creator",
    page_icon=AI_ICON,
    # menu_items={"About": None}
)
ipAddress = st.context.headers.get("x-forwarded-for")


def __nowInIST():
    return DT.datetime.now(pytz.timezone("Asia/Kolkata"))


def pprint(log: str):
    now = __nowInIST()
    now = now.strftime("%Y-%m-%d %H:%M:%S")
    print(f"[{now}] [{ipAddress}] {log}")


pprint("\n")


def predict(prompt):
    historyFormatted = [{"role": "system", "content": SYSTEM_MSG}]
    historyFormatted.extend(st.session_state.messages)
    historyFormatted.append({"role": "user", "content": prompt })
    contextSize = countTokens(str(historyFormatted))
    pprint(f"{contextSize=}")

    response = client.chat.completions.create(
        model="llama-3.1-70b-versatile",
        messages=historyFormatted,
        temperature=1.0,
        max_tokens=4000,
        stream=True
    )

    chunkCount = 0
    for chunk in response:
        chunkContent = chunk.choices[0].delta.content
        if chunkContent:
            chunkCount += 1
            yield chunkContent


st.title("Let's create your story 📖")
with st.chat_message("user", avatar=AI_ICON):
    st.write("Type 'Hi' to start")

# st.markdown(
#     """
#     <style>
#         :root {
#             --bg-color: white;
#             --text-color: black;
#         }

#         .main {
#             background-color: var(--bg-color);
#             color: var(--text-color);
#             transition: background-color 0.3s, color 0.3s;
#         }
#     </style>
#     """,
#     unsafe_allow_html=True
# )

if "messages" not in st.session_state:
    st.session_state.messages = []


for message in st.session_state.messages:
    role = message["role"]
    content = message["content"]
    avatar = AI_ICON if role == "assistant" else USER_ICON
    with st.chat_message(role, avatar=avatar):
        st.markdown(content)

if prompt := st.chat_input():
    with st.chat_message("user", avatar=USER_ICON):
        st.markdown(prompt)
    pprint(f"{prompt=}")
    st.session_state.messages.append({"role": "user", "content": prompt })

    with st.chat_message("assistant", avatar=AI_ICON):
        responseGenerator = predict(prompt)
        response = st.write_stream(responseGenerator)
    pprint(f"{response=}")
    st.session_state.messages.append({"role": "assistant", "content": response})