File size: 13,547 Bytes
10cde02
 
e2d2e30
 
 
7c9530c
28f5d18
59488ed
c1f566c
 
7c9530c
 
 
 
10cde02
 
 
 
7c9530c
 
 
 
 
 
 
10cde02
c1f566c
7c9530c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab3334d
f23957c
c1f566c
ab3334d
 
10cde02
c1f566c
 
a94a1dc
28f5d18
e2d2e30
59488ed
e2d2e30
 
 
59488ed
f97efd9
 
 
 
031f614
59488ed
 
7c9530c
c1f566c
7c9530c
 
59488ed
c1f566c
e2d2e30
c1f566c
7c9530c
 
 
c1f566c
7c9530c
e2d2e30
 
59488ed
 
 
 
 
 
 
7c9530c
a94a1dc
 
 
c1f566c
a94a1dc
 
c1f566c
a94a1dc
59488ed
 
7c9530c
a94a1dc
59488ed
a94a1dc
59488ed
a94a1dc
7c9530c
c1f566c
7c9530c
a94a1dc
 
7c9530c
 
 
 
a94a1dc
 
 
 
 
 
 
 
 
 
 
 
 
59488ed
 
a94a1dc
 
59488ed
a94a1dc
 
 
c1f566c
a94a1dc
7c9530c
 
 
 
 
a94a1dc
7c9530c
 
 
a94a1dc
7c9530c
e2d2e30
 
7c9530c
 
 
 
c1f566c
7c9530c
 
c1f566c
7c9530c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c1f566c
7c9530c
 
bfb639d
7c9530c
 
 
 
 
 
 
 
 
 
 
 
e2d2e30
c1f566c
e2d2e30
7c9530c
e2d2e30
 
bfb639d
a94a1dc
c1f566c
 
a94a1dc
 
 
c1f566c
bfb639d
a94a1dc
bfb639d
a94a1dc
 
7c9530c
 
c1f566c
 
10cde02
 
7c9530c
 
10cde02
7c9530c
 
 
 
 
 
 
 
031f614
c1f566c
7c9530c
 
 
 
 
 
c1f566c
7c9530c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c1f566c
7c9530c
 
 
 
 
c1f566c
 
7c9530c
 
 
a94a1dc
 
59488ed
 
 
a94a1dc
 
59488ed
 
 
c1f566c
59488ed
 
 
c1f566c
7c9530c
 
 
 
 
 
 
 
c1f566c
7c9530c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c1f566c
7c9530c
c1f566c
 
7c9530c
c1f566c
 
 
7c9530c
 
bfb639d
 
 
 
c1f566c
0bc0145
10cde02
59488ed
 
10cde02
c1f566c
 
 
7c9530c
 
 
 
c1f566c
7c9530c
 
e2d2e30
7c9530c
e2d2e30
 
c1f566c
10cde02
c1f566c
bfb639d
7c9530c
10cde02
c1f566c
59488ed
e2d2e30
59488ed
e2d2e30
c1f566c
0d00aee
e2d2e30
 
 
 
c1f566c
e2d2e30
 
c1f566c
59488ed
e2d2e30
 
 
59488ed
e2d2e30
c1f566c
 
59488ed
e2d2e30
c1f566c
e2d2e30
 
 
c1f566c
e2d2e30
031f614
c1f566c
59488ed
 
e2d2e30
 
 
59488ed
a94a1dc
59488ed
a94a1dc
59488ed
a94a1dc
 
 
 
 
 
 
 
 
 
c1f566c
7c9530c
59488ed
 
c1f566c
a94a1dc
59488ed
7c9530c
 
 
 
 
 
 
031f614
7c9530c
 
59488ed
e2d2e30
 
 
7c9530c
 
 
 
 
 
 
 
 
 
 
c1f566c
 
 
7c9530c
e2d2e30
c1f566c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
import streamlit as st
import os
import time
import json
import re
from typing import List, Literal, TypedDict, Tuple
from transformers import AutoTokenizer
from gradio_client import Client
import constants as C
import utils as U

from openai import OpenAI
import anthropic
from groq import Groq

from dotenv import load_dotenv
load_dotenv()

ModelType = Literal["GPT4", "CLAUDE", "LLAMA"]
ModelConfig = TypedDict("ModelConfig", {
    "client": OpenAI | Groq | anthropic.Anthropic,
    "model": str,
    "max_context": int,
    "tokenizer": AutoTokenizer
})

modelType: ModelType = os.environ.get("MODEL_TYPE") or "CLAUDE"

MODEL_CONFIG: dict[ModelType, ModelConfig] = {
    "GPT4": {
        "client": OpenAI(api_key=os.environ.get("OPENAI_API_KEY")),
        "model": "gpt-4o-mini",
        "max_context": 128000,
        "tokenizer": AutoTokenizer.from_pretrained("Xenova/gpt-4o")
    },
    "CLAUDE": {
        "client": anthropic.Anthropic(api_key=os.environ.get("ANTHROPIC_API_KEY")),
        "model": "claude-3-sonnet-20240229",
        "max_context": 128000,
        "tokenizer": AutoTokenizer.from_pretrained("Xenova/claude-tokenizer")
    },
    "LLAMA": {
        "client": Groq(api_key=os.environ.get("GROQ_API_KEY")),
        "model": "llama-3.1-70b-versatile",
        "max_context": 128000,
        "tokenizer": AutoTokenizer.from_pretrained("Xenova/Meta-Llama-3.1-Tokenizer")
    }
}

client = MODEL_CONFIG[modelType]["client"]
MODEL = MODEL_CONFIG[modelType]["model"]
MAX_CONTEXT = MODEL_CONFIG[modelType]["max_context"]
tokenizer = MODEL_CONFIG[modelType]["tokenizer"]

isClaudeModel = modelType == "CLAUDE"


def __countTokens(text):
    text = str(text)
    tokens = tokenizer.encode(text, add_special_tokens=False)
    return len(tokens)


st.set_page_config(
    page_title="Kommuneity Story Creator",
    page_icon=C.AI_ICON,
    # menu_items={"About": None}
)

U.pprint("\n")
U.pprint("\n")


def __isInvalidResponse(response: str):
    # new line followed by small case char
    if len(re.findall(r'\n[a-z]', response)) > 3:
        return True

    # lot of repeating words
    if len(re.findall(r'\b(\w+)(\s+\1){2,}\b', response)) > 1:
        return True

    # lots of paragraphs
    if len(re.findall(r'\n\n', response)) > 20:
        return True

    # LLM API threw exception
    if C.EXCEPTION_KEYWORD in response:
        return True

    # json response without json separator
    if ('{\n    "options"' in response) and (C.JSON_SEPARATOR not in response):
        return True
    if ('{\n    "action"' in response) and (C.JSON_SEPARATOR not in response):
        return True

    # only options with no text
    if response.startswith(C.JSON_SEPARATOR):
        return True


def __matchingKeywordsCount(keywords: List[str], text: str):
    return sum([
        1 if keyword in text else 0
        for keyword in keywords
    ])


def __getRawImagePromptDetails(prompt: str, response: str) -> Tuple[str, str, str]:
    regex = r'[^a-z0-9 \n\.\-]|((the) +)'

    cleanedResponse = re.sub(regex, '', response.lower())
    U.pprint(f"{cleanedResponse=}")

    cleanedPrompt = re.sub(regex, '', prompt.lower())
    U.pprint(f"{cleanedPrompt=}")

    if (
        __matchingKeywordsCount(
            ["adapt", "personal branding", "purpose", "use case"],
            cleanedResponse
        ) > 2
        and "story so far" not in cleanedResponse
    ):
        return (
            f"Extract the name of selected story from this text and add few more details about this story:\n{response}",
            "Effect: dramatic, bokeh",
            "Painting your character ...",
        )

        '''
        Style: Fantastical, in a storybook, surreal, bokeh
        '''

        '''
        Mood: ethereal lighting that emphasizes the fantastical nature of the scene.

        storybook style

        4d model, unreal engine

        Alejandro Bursido

        vintage, nostalgic

        Dreamlike, Mystical, Fantastical, Charming
        '''

    if __matchingKeywordsCount(
        ["tier 2", "tier-2"],
        cleanedResponse
    ) > 0:
        possibleStoryEndIdx = [response.find("tier 2"), response.find("tier-2")]
        storyEndIdx = max(possibleStoryEndIdx)
        relevantResponse = response[:storyEndIdx]
        U.pprint(f"{relevantResponse=}")
        return (
            "Extract the story plot from this text:\n{response}",
            """
            Style: In a storybook, surreal
            """,
            "Imagining your scene (beta) ...",
        )
        """
        photo of a scene from this text: {relevantResponse}.
        """

    return (None, None, None)


def __getImagePromptDetails(prompt: str, response: str):
    (enhancePrompt, imagePrompt, loaderText) = __getRawImagePromptDetails(prompt, response)

    if imagePrompt or enhancePrompt:
        U.pprint(f"[Raw] {enhancePrompt=} | {imagePrompt=}")

        promptEnhanceModelType: ModelType = "LLAMA"
        U.pprint(f"{promptEnhanceModelType=}")

        modelConfig = MODEL_CONFIG[promptEnhanceModelType]
        client = modelConfig["client"]
        model = modelConfig["model"]
        isClaudeModel = promptEnhanceModelType == "CLAUDE"

        systemPrompt = "You help in creating prompts for image generation"
        promptPrefix = f"{enhancePrompt}\nAnd then use the above to" if enhancePrompt else "Use the text below to"

        llmArgs = {
            "model": model,
            "messages": [{
                "role": "user",
                "content": f"{promptPrefix} create a prompt for image generation (limit to less than 500 words)\n\n{imagePrompt}"
            }],
            "temperature": 1,
            "max_tokens": 2000
        }

        if isClaudeModel:
            llmArgs["system"] = systemPrompt
            response = client.messages.create(**llmArgs)
            imagePrompt = response.content[0].text
        else:
            llmArgs["messages"] = [
                {"role": "system", "content": systemPrompt},
                *llmArgs["messages"]
            ]
            response = client.chat.completions.create(**llmArgs)
            responseMessage = response.choices[0].message
            imagePrompt = responseMessage.content

        U.pprint(f"[Enhanced] {imagePrompt=}")

    return (imagePrompt, loaderText)


def __getMessages():
    def getContextSize():
        currContextSize = __countTokens(C.SYSTEM_MSG) + __countTokens(st.session_state.messages) + 100
        U.pprint(f"{currContextSize=}")
        return currContextSize

    while getContextSize() > MAX_CONTEXT:
        U.pprint("Context size exceeded, removing first message")
        st.session_state.messages.pop(0)

    return st.session_state.messages


def __logLlmRequest(messagesFormatted: list):
    contextSize = __countTokens(messagesFormatted)
    U.pprint(f"{contextSize=} | {MODEL}")
    # U.pprint(f"{messagesFormatted=}")


def predict():
    messagesFormatted = []

    try:
        if isClaudeModel:
            messagesFormatted.extend(__getMessages())
            __logLlmRequest(messagesFormatted)

            with client.messages.stream(
                model=MODEL,
                messages=messagesFormatted,
                temperature=0.7,
                system=C.SYSTEM_MSG,
                max_tokens=4000,
            ) as stream:
                for text in stream.text_stream:
                    yield text
        else:
            messagesFormatted.append(
                {"role": "system", "content": C.SYSTEM_MSG}
            )
            messagesFormatted.extend(__getMessages())
            __logLlmRequest(messagesFormatted)

            response = client.chat.completions.create(
                model=MODEL,
                messages=messagesFormatted,
                temperature=0.8,
                max_tokens=4000,
                stream=True
            )

            for chunk in response:
                choices = chunk.choices
                if not choices:
                    U.pprint("Empty chunk")
                    continue
                chunkContent = chunk.choices[0].delta.content
                if chunkContent:
                    yield chunkContent
    except Exception as e:
        U.pprint(f"LLM API Error: {e}")
        yield C.EXCEPTION_KEYWORD


def __generateImage(prompt: str):
    fluxClient = Client("black-forest-labs/FLUX.1-schnell")
    result = fluxClient.predict(
            prompt=prompt,
            seed=0,
            randomize_seed=True,
            width=1024,
            height=768,
            num_inference_steps=4,
            api_name="/infer"
    )
    U.pprint(f"imageResult={result}")
    return result


U.applyCommonStyles()
st.title("Kommuneity Story Creator 🪄")


def __resetButtonState():
    st.session_state.buttonValue = ""


def __resetSelectedStory():
    st.session_state.selectedStory = {}


def __setStartMsg(msg):
    st.session_state.startMsg = msg


if "chatHistory" not in st.session_state:
    st.session_state.chatHistory = []

if "messages" not in st.session_state:
    st.session_state.messages = []

if "buttonValue" not in st.session_state:
    __resetButtonState()

if "selectedStory" not in st.session_state:
    __resetSelectedStory()

if "storyChosen" not in st.session_state:
    st.session_state.storyChosen = False

if "startMsg" not in st.session_state:
    __setStartMsg("")
    st.button(C.START_MSG, on_click=lambda: __setStartMsg(C.START_MSG))


for chat in st.session_state.chatHistory:
    role = chat["role"]
    content = chat["content"]
    imagePath = chat.get("image")
    avatar = C.AI_ICON if role == "assistant" else C.USER_ICON
    with st.chat_message(role, avatar=avatar):
        st.markdown(content)
        if imagePath:
            st.image(imagePath)

# U.pprint(f"{st.session_state.buttonValue=}")
# U.pprint(f"{st.session_state.selectedStory=}")
# U.pprint(f"{st.session_state.startMsg=}")

if prompt := (
    st.chat_input()
    or st.session_state["buttonValue"]
    or st.session_state["selectedStory"].get("title")
    or st.session_state["startMsg"]
):
    __resetButtonState()
    __resetSelectedStory()
    __setStartMsg("")

    with st.chat_message("user", avatar=C.USER_ICON):
        st.markdown(prompt)
    U.pprint(f"{prompt=}")
    st.session_state.chatHistory.append({"role": "user", "content": prompt })
    st.session_state.messages.append({"role": "user", "content": prompt})

    with st.chat_message("assistant", avatar=C.AI_ICON):
        responseContainer = st.empty()

        def __printAndGetResponse():
            response = ""
            responseContainer.image(C.TEXT_LOADER)
            responseGenerator = predict()

            for chunk in responseGenerator:
                response += chunk
                if __isInvalidResponse(response):
                    U.pprint(f"InvalidResponse={response}")
                    return

                if C.JSON_SEPARATOR not in response:
                    responseContainer.markdown(response)

            return response

        response = __printAndGetResponse()
        while not response:
            U.pprint("Empty response. Retrying..")
            time.sleep(0.7)
            response = __printAndGetResponse()

        U.pprint(f"{response=}")

        def selectButton(optionLabel):
            st.session_state["buttonValue"] = optionLabel
            U.pprint(f"Selected: {optionLabel}")

        rawResponse = response
        responseParts = response.split(C.JSON_SEPARATOR)

        jsonStr = None
        if len(responseParts) > 1:
            [response, jsonStr] = responseParts

        imagePath = None
        imageContainer = st.empty()
        try:
            (imagePrompt, loaderText) = __getImagePromptDetails(prompt, response)
            if imagePrompt:
                imgContainer = imageContainer.container()
                imgContainer.write(
                    f"""
                    <div class='blinking code'>
                    {loaderText}
                    </div>
                    """,
                    unsafe_allow_html=True
                )
                # imgContainer.markdown(f"`{loaderText}`")
                imgContainer.image(C.IMAGE_LOADER)
                (imagePath, seed) = __generateImage(imagePrompt)
                imageContainer.image(imagePath)
        except Exception as e:
            U.pprint(e)
            imageContainer.empty()

        st.session_state.chatHistory.append({
            "role": "assistant",
            "content": response,
            "image": imagePath,
        })
        st.session_state.messages.append({
            "role": "assistant",
            "content": rawResponse,
        })

        if jsonStr:
            try:
                json.loads(jsonStr)
                jsonObj = json.loads(jsonStr)
                options = jsonObj.get("options")
                action = jsonObj.get("action")

                if options:
                    for option in options:
                        st.button(
                            option["label"],
                            key=option["id"],
                            on_click=lambda label=option["label"]: selectButton(label)
                        )
                elif action:
                    U.pprint(f"{action=}")
                    if action == "SHOW_STORY_DATABASE" and not st.session_state.storyChosen:
                        st.switch_page("pages/popular-stories.py")
                    # st.code(jsonStr, language="json")
            except Exception as e:
                U.pprint(e)