File size: 15,355 Bytes
10cde02 71a2c91 10cde02 e2d2e30 7c9530c 28f5d18 59488ed 7c9530c 10cde02 db7b744 21999ba 397dfe3 db7b744 10cde02 36bcbee 7c9530c 10cde02 c1f566c 7c9530c fa1a863 7c9530c ab3334d f23957c c1f566c ab3334d 10cde02 28f5d18 e2d2e30 0629fcf e2d2e30 f97efd9 0629fcf f97efd9 71a2c91 0629fcf 59488ed c1f566c 0629fcf b40d264 7c9530c c1f566c 0629fcf e2d2e30 c1f566c 0629fcf 7c9530c c1f566c 0629fcf 7c9530c e2d2e30 59488ed 7c9530c 1675db5 a94a1dc c1f566c a94a1dc fa1a863 e67763b a94a1dc e67763b c1f566c e67763b a94a1dc fa1a863 94053ec 5bec612 94053ec 5bec612 94053ec a94a1dc 5bec612 7c9530c 5d5d235 a94a1dc 7c9530c e2d2e30 7c9530c 0b392f8 7c9530c c1f566c 7c9530c 0b392f8 e67763b 0b392f8 7c9530c 852eeec 7c9530c c1f566c 7c9530c bfb639d 7c9530c e2d2e30 c1f566c e2d2e30 7c9530c e2d2e30 bfb639d a94a1dc c1f566c a94a1dc c1f566c bfb639d a94a1dc bfb639d a94a1dc 7c9530c c1f566c 10cde02 db7b744 7c9530c 10cde02 7c9530c c1f566c fa1a863 7c9530c c1f566c 7c9530c 5bec612 7c9530c c1f566c 7c9530c c1f566c b40d264 7c9530c 21999ba a94a1dc 59488ed a94a1dc 59488ed c1f566c 59488ed 71a2c91 21999ba 7c9530c 21999ba 7c9530c c1f566c 7c9530c e03c26e 7c9530c c1f566c 7c9530c 71a2c91 e67763b 7c9530c 21999ba 4f94b44 397dfe3 4f94b44 e2d2e30 db7b744 21999ba db7b744 21999ba db7b744 e8511c9 db7b744 21999ba db7b744 21999ba db7b744 10cde02 db7b744 e2d2e30 db7b744 e2d2e30 db7b744 e2d2e30 db7b744 e2d2e30 db7b744 e2d2e30 db7b744 e2d2e30 db7b744 36bcbee db7b744 21999ba db7b744 21999ba db7b744 21999ba db7b744 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 |
import streamlit as st
from streamlit.delta_generator import DeltaGenerator
import os
import time
import json
import re
from typing import List, Literal, TypedDict, Tuple
from transformers import AutoTokenizer
from gradio_client import Client
from openai import OpenAI
import anthropic
from groq import Groq
import constants as C
import utils as U
from helpers.auth import runWithAuth
from helpers.sidebar import showSidebar
from helpers.activities import saveLatestActivity
from helpers.imageCdn import initCloudinary, getCdnUrl
from dotenv import load_dotenv
load_dotenv()
ModelType = Literal["GPT4", "CLAUDE", "LLAMA"]
ModelConfig = TypedDict("ModelConfig", {
"client": OpenAI | Groq | anthropic.Anthropic,
"model": str,
"max_context": int,
"tokenizer": AutoTokenizer
})
modelType: ModelType = os.environ.get("MODEL_TYPE") or "CLAUDE"
MODEL_CONFIG: dict[ModelType, ModelConfig] = {
"GPT4": {
"client": OpenAI(api_key=os.environ.get("OPENAI_API_KEY")),
"model": "gpt-4o-mini",
"max_context": 128000,
"tokenizer": AutoTokenizer.from_pretrained("Xenova/gpt-4o")
},
"CLAUDE": {
"client": anthropic.Anthropic(api_key=os.environ.get("ANTHROPIC_API_KEY")),
"model": "claude-3-5-sonnet-20240620",
"max_context": 128000,
"tokenizer": AutoTokenizer.from_pretrained("Xenova/claude-tokenizer")
},
"LLAMA": {
"client": Groq(api_key=os.environ.get("GROQ_API_KEY")),
"model": "llama-3.1-70b-versatile",
"max_context": 128000,
"tokenizer": AutoTokenizer.from_pretrained("Xenova/Meta-Llama-3.1-Tokenizer")
}
}
client = MODEL_CONFIG[modelType]["client"]
MODEL = MODEL_CONFIG[modelType]["model"]
MAX_CONTEXT = MODEL_CONFIG[modelType]["max_context"]
tokenizer = MODEL_CONFIG[modelType]["tokenizer"]
isClaudeModel = modelType == "CLAUDE"
def __countTokens(text):
text = str(text)
tokens = tokenizer.encode(text, add_special_tokens=False)
return len(tokens)
st.set_page_config(
page_title="Kommuneity Story Creator",
page_icon=C.AI_ICON,
# menu_items={"About": None}
)
def __isInvalidResponse(response: str):
if len(re.findall(r'\n((?!http)[a-z])', response)) > 3 and "```" not in response:
U.pprint("new line followed by small case char")
return True
if len(re.findall(r'\b(\w+)(\s+\1){2,}\b', response)) > 1:
U.pprint("lot of consecutive repeating words")
return True
if len(re.findall(r'\n\n', response)) > 30:
U.pprint("lots of paragraphs")
return True
if C.EXCEPTION_KEYWORD in response:
U.pprint("LLM API threw exception")
if 'roles must alternate between "user" and "assistant"' in str(response):
U.pprint("Removing last msg from context...")
st.session_state.messages.pop(-2)
return True
if ('{\n "options"' in response) and (C.JSON_SEPARATOR not in response):
U.pprint("JSON response without json separator")
return True
if ('{\n "action"' in response) and (C.JSON_SEPARATOR not in response):
U.pprint("JSON response without json separator")
return True
if response.startswith(C.JSON_SEPARATOR):
U.pprint("only options with no text")
return True
def __matchingKeywordsCount(keywords: List[str], text: str):
return sum([
1 if keyword in text else 0
for keyword in keywords
])
def __getRawImagePromptDetails(prompt: str, response: str) -> Tuple[str, str, str]:
regex = r'[^a-z0-9 \n\.\-\:\/]|((the) +)'
cleanedResponse = re.sub(regex, '', response.lower())
U.pprint(f"{cleanedResponse=}")
cleanedPrompt = re.sub(regex, '', prompt.lower())
if (st.session_state.selectedStory):
imageText = st.session_state.selectedStory
return (
f"Extract the story from this text and add few more details about this story:\n{imageText}",
"Effect: dramatic, bokeh",
"Painting your story character ...",
)
if (
__matchingKeywordsCount(
[C.BOOKING_LINK],
cleanedResponse
) > 0
and "storytelling coach" not in cleanedPrompt
):
aiResponses = [
chat.get("content")
for chat in st.session_state.chatHistory
if chat.get("role") == "assistant"
]
relevantResponse = f"""
{aiResponses[-1]}
{response}
"""
return (
f"Extract the story from this text:\n{relevantResponse}",
"""
Style: In a storybook, surreal
""",
"Imagining your story scene ...",
)
return (None, None, None)
def __getImagePromptDetails(prompt: str, response: str):
(enhancePrompt, imagePrompt, loaderText) = __getRawImagePromptDetails(prompt, response)
if imagePrompt or enhancePrompt:
# U.pprint(f"[Raw] {enhancePrompt=} | {imagePrompt=}")
promptEnhanceModelType: ModelType = "LLAMA"
U.pprint(f"{promptEnhanceModelType=}")
modelConfig = MODEL_CONFIG[promptEnhanceModelType]
client = modelConfig["client"]
model = modelConfig["model"]
isClaudeModel = promptEnhanceModelType == "CLAUDE"
systemPrompt = "You help in creating prompts for image generation"
promptPrefix = f"{enhancePrompt}\nAnd then use the above to" if enhancePrompt else "Use the text below to"
enhancePrompt = f"""
{promptPrefix} create a prompt for image generation.
{imagePrompt}
Return only the final Image Generation Prompt, and nothing else
"""
U.pprint(f"[Raw] {enhancePrompt=}")
llmArgs = {
"model": model,
"messages": [{
"role": "user",
"content": enhancePrompt
}],
"temperature": 1,
"max_tokens": 2000
}
if isClaudeModel:
llmArgs["system"] = systemPrompt
response = client.messages.create(**llmArgs)
imagePrompt = response.content[0].text
else:
llmArgs["messages"] = [
{"role": "system", "content": systemPrompt},
*llmArgs["messages"]
]
response = client.chat.completions.create(**llmArgs)
responseMessage = response.choices[0].message
imagePrompt = responseMessage.content
U.pprint(f"[Enhanced] {imagePrompt=}")
return (imagePrompt, loaderText)
def __getMessages():
def getContextSize():
currContextSize = __countTokens(C.SYSTEM_MSG) + __countTokens(st.session_state.messages) + 100
U.pprint(f"{currContextSize=}")
return currContextSize
while getContextSize() > MAX_CONTEXT:
U.pprint("Context size exceeded, removing first message")
st.session_state.messages.pop(0)
return st.session_state.messages
def __logLlmRequest(messagesFormatted: list):
contextSize = __countTokens(messagesFormatted)
U.pprint(f"{contextSize=} | {MODEL}")
# U.pprint(f"{messagesFormatted=}")
def __predict():
messagesFormatted = []
try:
if isClaudeModel:
messagesFormatted.extend(__getMessages())
__logLlmRequest(messagesFormatted)
with client.messages.stream(
model=MODEL,
messages=messagesFormatted,
system=C.SYSTEM_MSG,
temperature=0.9,
max_tokens=4000,
) as stream:
for text in stream.text_stream:
yield text
else:
messagesFormatted.append(
{"role": "system", "content": C.SYSTEM_MSG}
)
messagesFormatted.extend(__getMessages())
__logLlmRequest(messagesFormatted)
response = client.chat.completions.create(
model=MODEL,
messages=messagesFormatted,
temperature=1,
max_tokens=4000,
stream=True
)
for chunk in response:
choices = chunk.choices
if not choices:
U.pprint("Empty chunk")
continue
chunkContent = chunk.choices[0].delta.content
if chunkContent:
yield chunkContent
except Exception as e:
U.pprint(f"LLM API Error: {e}")
yield f"{C.EXCEPTION_KEYWORD} | {e}"
def __generateImage(prompt: str):
fluxClient = Client(
"black-forest-labs/FLUX.1-schnell",
os.environ.get("HF_FLUX_CLIENT_TOKEN")
)
result = fluxClient.predict(
prompt=prompt,
seed=0,
randomize_seed=True,
width=1024,
height=768,
num_inference_steps=4,
api_name="/infer"
)
U.pprint(f"imageResult={result}")
return result
def __paintImageIfApplicable(
imageContainer: DeltaGenerator,
prompt: str,
response: str,
):
imagePath = None
try:
(imagePrompt, loaderText) = __getImagePromptDetails(prompt, response)
if imagePrompt:
imgContainer = imageContainer.container()
imgContainer.write(
f"""
<div class='blinking code'>
{loaderText}
</div>
""",
unsafe_allow_html=True
)
imgContainer.image(C.IMAGE_LOADER)
(imagePath, seed) = __generateImage(imagePrompt)
imageContainer.image(imagePath)
except Exception as e:
U.pprint(e)
imageContainer.empty()
return imagePath
def __selectButton(optionLabel: str):
st.session_state["buttonValue"] = optionLabel
U.pprint(f"Selected: {optionLabel}")
def __showButtons(options: list):
for option in options:
st.button(
option["label"],
key=option["id"],
on_click=lambda label=option["label"]: __selectButton(label)
)
def __resetButtonState():
st.session_state.buttonValue = ""
def __resetButtons():
st.session_state.buttons = []
def __resetSelectedStory():
st.session_state.selectedStory = {}
def __setStartMsg(msg):
st.session_state.startMsg = msg
if "ipAddress" not in st.session_state:
st.session_state.ipAddress = st.context.headers.get("x-forwarded-for")
if "chatHistory" not in st.session_state:
st.session_state.chatHistory = []
if "messages" not in st.session_state:
st.session_state.messages = []
if "buttonValue" not in st.session_state:
__resetButtonState()
if "selectedStory" not in st.session_state:
__resetSelectedStory()
if "selectedStoryTitle" not in st.session_state:
st.session_state.selectedStoryTitle = ""
if "isStoryChosen" not in st.session_state:
st.session_state.isStoryChosen = False
if "buttons" not in st.session_state:
st.session_state.buttons = []
if "activityId" not in st.session_state:
st.session_state.activityId = None
if "userActivitiesLog" not in st.session_state:
st.session_state.userActivitiesLog = []
U.pprint("\n")
U.pprint("\n")
U.applyCommonStyles()
initCloudinary()
st.title("Kommuneity Story Creator 🪄")
def mainApp():
if "startMsg" not in st.session_state:
__setStartMsg("")
st.button(C.START_MSG, on_click=lambda: __setStartMsg(C.START_MSG))
for (i, chat) in enumerate(st.session_state.chatHistory):
role = chat["role"]
content = chat["content"]
imagePath = chat.get("image")
buttons = chat.get("buttons")
avatar = C.AI_ICON if role == "assistant" else C.USER_ICON
with st.chat_message(role, avatar=avatar):
st.markdown(content)
if imagePath and U.isValidImageUrl(imagePath):
st.image(imagePath)
if buttons:
__showButtons(buttons)
chat["buttons"] = []
# U.pprint(f"{st.session_state.buttonValue=}")
# U.pprint(f"{st.session_state.selectedStoryTitle=}")
# U.pprint(f"{st.session_state.startMsg=}")
if prompt := (
st.chat_input()
or st.session_state["buttonValue"]
or st.session_state["selectedStoryTitle"]
or st.session_state["startMsg"]
):
__resetButtonState()
__resetButtons()
__setStartMsg("")
if st.session_state["selectedStoryTitle"] != prompt:
__resetSelectedStory()
st.session_state.selectedStoryTitle = ""
with st.chat_message("user", avatar=C.USER_ICON):
st.markdown(prompt)
U.pprint(f"{prompt=}")
st.session_state.chatHistory.append({"role": "user", "content": prompt })
st.session_state.messages.append({"role": "user", "content": prompt})
with st.chat_message("assistant", avatar=C.AI_ICON):
responseContainer = st.empty()
def __printAndGetResponse():
response = ""
responseContainer.image(C.TEXT_LOADER)
responseGenerator = __predict()
for chunk in responseGenerator:
response += chunk
if __isInvalidResponse(response):
U.pprint(f"InvalidResponse={response}")
return
if C.JSON_SEPARATOR not in response:
responseContainer.markdown(response)
return response
response = __printAndGetResponse()
while not response:
U.pprint("Empty response. Retrying..")
time.sleep(0.7)
response = __printAndGetResponse()
U.pprint(f"{response=}")
rawResponse = response
responseParts = response.split(C.JSON_SEPARATOR)
jsonStr = None
if len(responseParts) > 1:
[response, jsonStr] = responseParts
imageContainer = st.empty()
imagePath = __paintImageIfApplicable(imageContainer, prompt, response)
if imagePath:
imagePath = getCdnUrl(imagePath)
st.session_state.chatHistory.append({
"role": "assistant",
"content": response,
"image": imagePath,
})
st.session_state.messages.append({
"role": "assistant",
"content": rawResponse,
})
if jsonStr:
try:
json.loads(jsonStr)
jsonObj = json.loads(jsonStr)
options = jsonObj.get("options")
action = jsonObj.get("action")
if options:
__showButtons(options)
st.session_state.buttons = options
elif action:
U.pprint(f"{action=}")
if action == "SHOW_STORY_DATABASE":
time.sleep(0.5)
st.switch_page("pages/popular-stories.py")
# st.code(jsonStr, language="json")
except Exception as e:
U.pprint(e)
saveLatestActivity()
runWithAuth(mainApp)
showSidebar()
|