sd-to-diffusers / app.py
anzorq's picture
Update app.py
2e34708
raw
history blame
6.51 kB
import os
import subprocess
from huggingface_hub import HfApi, upload_folder
import gradio as gr
import hf_utils
import utils
subprocess.run(["git", "clone", "https://github.com/huggingface/diffusers.git", "diffs"])
def error_str(error, title="Error"):
return f"""#### {title}
{error}""" if error else ""
def on_token_change(token):
model_names, error = hf_utils.get_my_model_names(token)
if model_names:
model_names.append("Other")
return gr.update(visible=bool(model_names)), gr.update(choices=model_names, value=model_names[0] if model_names else None), gr.update(value=error_str(error))
def url_to_model_id(model_id_str):
return model_id_str.split("/")[-2] + "/" + model_id_str.split("/")[-1] if model_id_str.startswith("https://huggingface.co/") else model_id_str
def get_ckpt_names(token, radio_model_names, input_model):
model_id = url_to_model_id(input_model) if radio_model_names == "Other" else radio_model_names
if token == "" or model_id == "":
return error_str("Please enter both a token and a model name.", title="Invalid input"), gr.update(choices=[]), gr.update(visible=False)
try:
api = HfApi(token=token)
ckpt_files = [f for f in api.list_repo_files(repo_id=model_id) if f.endswith(".ckpt")]
if not ckpt_files:
return error_str("No checkpoint files found in the model repo."), gr.update(choices=[]), gr.update(visible=False)
return None, gr.update(choices=ckpt_files, value=ckpt_files[0], visible=True), gr.update(visible=True)
except Exception as e:
return error_str(e), gr.update(choices=[]), None
def convert_and_push(radio_model_names, input_model, ckpt_name, token):
model_id = url_to_model_id(input_model) if radio_model_names == "Other" else radio_model_names
try:
model_id = url_to_model_id(model_id)
# 1. Download the checkpoint file
ckpt_path, revision = hf_utils.download_file(repo_id=model_id, filename=ckpt_name, token=token)
# 2. Run the conversion script
os.makedirs(model_id)
subprocess.run(
[
"python3",
"./diffs/scripts/convert_original_stable_diffusion_to_diffusers.py",
"--checkpoint_path",
ckpt_path,
"--dump_path" ,
model_id,
]
)
# 3. Push to the model repo
commit_message="Add Diffusers weights"
upload_folder(
folder_path=model_id,
repo_id=model_id,
token=token,
create_pr=True,
commit_message=commit_message,
commit_description=f"Add Diffusers weights converted from checkpoint `{ckpt_name}` in revision {revision}",
)
# # 4. Delete the downloaded checkpoint file, yaml files, and the converted model folder
hf_utils.delete_file(revision)
subprocess.run(["rm", "-rf", model_id.split('/')[0]])
import glob
for f in glob.glob("*.yaml*"):
subprocess.run(["rm", "-rf", f])
return f"""Successfully converted the checkpoint and opened a PR to add the weights to the model repo.
You can view and merge the PR [here]({hf_utils.get_pr_url(HfApi(token=token), model_id, commit_message)})."""
except Exception as e:
return error_str(e)
DESCRIPTION = """### Convert a stable diffusion checkpoint to Diffusers🧨
With this space, you can easily convert a CompVis stable diffusion checkpoint to Diffusers and automatically create a pull request to the model repo.
You can choose to convert a checkpoint from one of your own models, or from any other model on the Hub."""
with gr.Blocks() as demo:
gr.Markdown(DESCRIPTION)
with gr.Row():
with gr.Column(scale=11):
with gr.Column():
gr.Markdown("## 1. Load model info")
input_token = gr.Textbox(
max_lines=1,
label="Enter your Hugging Face token",
placeholder="READ permission is enough",
)
gr.Markdown("You can get a token [here](https://huggingface.co/settings/tokens)")
with gr.Group(visible=False) as group_model:
radio_model_names = gr.Radio(label="Choose a model")
input_model = gr.Textbox(
max_lines=1,
label="Model name or URL",
placeholder="username/model_name",
visible=False,
)
btn_get_ckpts = gr.Button("Load")
with gr.Column(scale=10):
with gr.Column(visible=False) as group_convert:
gr.Markdown("## 2. Convert to Diffusers🧨")
radio_ckpts = gr.Radio(label="Choose the checkpoint to convert", visible=False)
gr.Markdown("Conversion may take a few minutes.")
btn_convert = gr.Button("Convert & Push")
error_output = gr.Markdown(label="Output")
input_token.change(
fn=on_token_change,
inputs=input_token,
outputs=[group_model, radio_model_names, error_output],
queue=False,
scroll_to_output=True)
radio_model_names.change(
lambda x: gr.update(visible=x == "Other"),
inputs=radio_model_names,
outputs=input_model,
queue=False,
scroll_to_output=True)
btn_get_ckpts.click(
fn=get_ckpt_names,
inputs=[input_token, radio_model_names, input_model],
outputs=[error_output, radio_ckpts, group_convert],
scroll_to_output=True,
queue=False
)
btn_convert.click(
fn=convert_and_push,
inputs=[radio_model_names, input_model, radio_ckpts, input_token],
outputs=error_output,
scroll_to_output=True
)
# gr.Markdown("""<img src="https://raw.githubusercontent.com/huggingface/diffusers/main/docs/source/imgs/diffusers_library.jpg" width="150"/>""")
gr.HTML("""
<p>Space by: <a href="https://twitter.com/hahahahohohe"><img src="https://img.shields.io/twitter/follow/hahahahohohe?label=%40anzorq&style=social" alt="Twitter Follow"></a></p><br>
<p><img src="https://visitor-badge.glitch.me/badge?page_id=anzorq.sd-to-diffusers" alt="visitors"></p>
""")
demo.queue()
demo.launch(share=utils.is_google_colab())