Spaces:
Runtime error
Runtime error
File size: 11,808 Bytes
68d7c04 2c19098 26063e6 73696f4 b8843c9 2c19098 76b564d a838e2b 73696f4 68d7c04 76b564d 0b1c1d9 a838e2b b8843c9 12e7a18 b8843c9 f899110 b126587 0d45ebb 890944a 76b564d a838e2b 3e9af73 a838e2b 73696f4 9c52fdd a838e2b 7b4bfcd a838e2b 712e3af a838e2b 712e3af a838e2b 712e3af a838e2b 76b564d 0b1c1d9 76b564d a838e2b 0b1c1d9 a838e2b 73696f4 f899110 b8843c9 f899110 b8843c9 73696f4 0b1c1d9 73696f4 0b1c1d9 01f98b3 0b1c1d9 890944a 0b1c1d9 2c19098 0b1c1d9 712e3af 0b1c1d9 712e3af a838e2b 0b1c1d9 a838e2b 73696f4 f899110 b8843c9 f899110 936d0e2 712e3af 73696f4 f899110 0b1c1d9 73696f4 0b1c1d9 712e3af 0b1c1d9 5fad7fd 0b1c1d9 712e3af 01b89ba 712e3af 0b1c1d9 01b89ba 7bd0a5a 73696f4 712e3af 7bd0a5a 712e3af 01b89ba 68d7c04 b8ecb9a 0b1c1d9 f899110 7bd0a5a 2c19098 088c386 f899110 68d7c04 f899110 0b1c1d9 f899110 0b1c1d9 f899110 0b1c1d9 f899110 0b1c1d9 f899110 0b1c1d9 f899110 0b1c1d9 f899110 0b1c1d9 f899110 2c19098 68d7c04 5983023 0b1c1d9 73696f4 0b1c1d9 68d7c04 0b1c1d9 dbc8c64 2c19098 f899110 9cc9b11 1d953f8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 |
from diffusers import AutoencoderKL, UNet2DConditionModel, StableDiffusionPipeline, StableDiffusionImg2ImgPipeline
import gradio as gr
import torch
from PIL import Image
import utils
is_colab = utils.is_google_colab()
class Model:
def __init__(self, name, path, prefix):
self.name = name
self.path = path
self.prefix = prefix
self.pipe_t2i = None
self.pipe_i2i = None
models = [
Model("Custom model", "", ""),
Model("Arcane", "nitrosocke/Arcane-Diffusion", "arcane style "),
Model("Archer", "nitrosocke/archer-diffusion", "archer style "),
Model("Elden Ring", "nitrosocke/elden-ring-diffusion", "elden ring style "),
Model("Spider-Verse", "nitrosocke/spider-verse-diffusion", "spiderverse style "),
Model("Modern Disney", "nitrosocke/mo-di-diffusion", "modern disney style "),
Model("Classic Disney", "nitrosocke/classic-anim-diffusion", ""),
Model("Waifu", "hakurei/waifu-diffusion", ""),
Model("Pokémon", "lambdalabs/sd-pokemon-diffusers", ""),
Model("Pony Diffusion", "AstraliteHeart/pony-diffusion", ""),
Model("Robo Diffusion", "nousr/robo-diffusion", ""),
Model("Cyberpunk Anime", "DGSpitzer/Cyberpunk-Anime-Diffusion", "dgs illustration style "),
Model("Tron Legacy", "dallinmackay/Tron-Legacy-diffusion", "trnlgcy ")
]
last_mode = "txt2img"
current_model = models[1]
current_model_path = current_model.path
if is_colab:
pipe = StableDiffusionPipeline.from_pretrained(current_model.path, torch_dtype=torch.float16)
else: # download all models
vae = AutoencoderKL.from_pretrained(current_model.path, subfolder="vae", torch_dtype=torch.float16)
for model in models[1:]:
try:
unet = UNet2DConditionModel.from_pretrained(model.path, subfolder="unet", torch_dtype=torch.float16)
model.pipe_t2i = StableDiffusionPipeline.from_pretrained(model.path, unet=unet, vae=vae, torch_dtype=torch.float16)
model.pipe_i2i = StableDiffusionImg2ImgPipeline.from_pretrained(model.path, unet=unet, vae=vae, torch_dtype=torch.float16)
except:
models.remove(model)
pipe = models[1].pipe_t2i
if torch.cuda.is_available():
pipe = pipe.to("cuda")
device = "GPU 🔥" if torch.cuda.is_available() else "CPU 🥶"
def custom_model_changed(path):
models[0].path = path
global current_model
current_model = models[0]
def inference(model_name, prompt, guidance, steps, width=512, height=512, seed=0, img=None, strength=0.5, neg_prompt=""):
global current_model
for model in models:
if model.name == model_name:
current_model = model
model_path = current_model.path
generator = torch.Generator('cuda').manual_seed(seed) if seed != 0 else None
if img is not None:
return img_to_img(model_path, prompt, neg_prompt, img, strength, guidance, steps, width, height, generator)
else:
return txt_to_img(model_path, prompt, neg_prompt, guidance, steps, width, height, generator)
def txt_to_img(model_path, prompt, neg_prompt, guidance, steps, width, height, generator=None):
global last_mode
global pipe
global current_model_path
if model_path != current_model_path or last_mode != "txt2img":
current_model_path = model_path
if is_colab or current_model == models[0]:
pipe = StableDiffusionPipeline.from_pretrained(current_model_path, torch_dtype=torch.float16)
else:
pipe.to("cpu")
pipe = current_model.pipe_t2i
if torch.cuda.is_available():
pipe = pipe.to("cuda")
last_mode = "txt2img"
prompt = current_model.prefix + prompt
result = pipe(
prompt,
negative_prompt = neg_prompt,
# num_images_per_prompt=n_images,
num_inference_steps = int(steps),
guidance_scale = guidance,
width = width,
height = height,
generator = generator)
return replace_nsfw_images(result)
def img_to_img(model_path, prompt, neg_prompt, img, strength, guidance, steps, width, height, generator=None):
global last_mode
global pipe
global current_model_path
if model_path != current_model_path or last_mode != "img2img":
current_model_path = model_path
if is_colab or current_model == models[0]:
pipe = StableDiffusionImg2ImgPipeline.from_pretrained(current_model_path, torch_dtype=torch.float16)
else:
pipe.to("cpu")
pipe = current_model.pipe_i2i
if torch.cuda.is_available():
pipe = pipe.to("cuda")
last_mode = "img2img"
prompt = current_model.prefix + prompt
ratio = min(height / img.height, width / img.width)
img = img.resize((int(img.width * ratio), int(img.height * ratio)), Image.LANCZOS)
result = pipe(
prompt,
negative_prompt = neg_prompt,
# num_images_per_prompt=n_images,
init_image = img,
num_inference_steps = int(steps),
strength = strength,
guidance_scale = guidance,
width = width,
height = height,
generator = generator)
return replace_nsfw_images(result)
def replace_nsfw_images(results):
for i in range(len(results.images)):
if results.nsfw_content_detected[i]:
results.images[i] = Image.open("nsfw.png")
return results.images[0]
css = """
<style>
.finetuned-diffusion-div {
text-align: center;
max-width: 700px;
margin: 0 auto;
}
.finetuned-diffusion-div div {
display: inline-flex;
align-items: center;
gap: 0.8rem;
font-size: 1.75rem;
}
.finetuned-diffusion-div div h1 {
font-weight: 900;
margin-bottom: 7px;
}
.finetuned-diffusion-div p {
margin-bottom: 10px;
font-size: 94%;
}
.finetuned-diffusion-div p a {
text-decoration: underline;
}
.tabs {
margin-top: 0px;
margin-bottom: 0px;
}
#gallery {
min-height: 20rem;
}
</style>
"""
with gr.Blocks(css=css) as demo:
gr.HTML(
f"""
<div class="finetuned-diffusion-div">
<div>
<h1>Finetuned Diffusion</h1>
</div>
<p>
Demo for multiple fine-tuned Stable Diffusion models, trained on different styles: <br>
<a href="https://huggingface.co/nitrosocke/Arcane-Diffusion">Arcane</a>, <a href="https://huggingface.co/nitrosocke/archer-diffusion">Archer</a>, <a href="https://huggingface.co/nitrosocke/elden-ring-diffusion">Elden Ring</a>, <a href="https://huggingface.co/nitrosocke/spider-verse-diffusion">Spider-Verse</a>, <a href="https://huggingface.co/nitrosocke/modern-disney-diffusion">Modern Disney</a>, <a href="https://huggingface.co/nitrosocke/classic-anim-diffusion">Classic Disney</a>, <a href="https://huggingface.co/hakurei/waifu-diffusion">Waifu</a>, <a href="https://huggingface.co/lambdalabs/sd-pokemon-diffusers">Pokémon</a>, <a href="https://huggingface.co/AstraliteHeart/pony-diffusion">Pony Diffusion</a>, <a href="https://huggingface.co/nousr/robo-diffusion">Robo Diffusion</a>, <a href="https://huggingface.co/DGSpitzer/Cyberpunk-Anime-Diffusion">Cyberpunk Anime</a>, <a href="https://huggingface.co/dallinmackay/Tron-Legacy-diffusion">Tron Legacy</a> + any other custom Diffusers 🧨 SD model hosted on HuggingFace 🤗.
</p>
<p>Don't want to wait in queue? <a href="https://colab.research.google.com/gist/qunash/42112fb104509c24fd3aa6d1c11dd6e0/copy-of-fine-tuned-diffusion-gradio.ipynb"><img data-canonical-src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab" src="https://camo.githubusercontent.com/84f0493939e0c4de4e6dbe113251b4bfb5353e57134ffd9fcab6b8714514d4d1/68747470733a2f2f636f6c61622e72657365617263682e676f6f676c652e636f6d2f6173736574732f636f6c61622d62616467652e737667"></a></p>
Running on <b>{device}</b>{(" in a <b>Google Colab</b>." if is_colab else "")}
</p>
</div>
"""
)
with gr.Row():
with gr.Column(scale=55):
with gr.Group():
model_name = gr.Dropdown(label="Model", choices=[m.name for m in models], value=current_model.name)
with gr.Box(visible=False) as custom_model_group:
custom_model_path = gr.Textbox(label="Custom model path", placeholder="Path to model, e.g. nitrosocke/Arcane-Diffusion", interactive=True)
gr.HTML("<div><font size='2'>Custom models have to be downloaded first, so give it some time.</font></div>")
with gr.Row():
prompt = gr.Textbox(label="Prompt", show_label=False, max_lines=2,placeholder="Enter prompt. Style applied automatically").style(container=False)
generate = gr.Button(value="Generate").style(rounded=(False, True, True, False))
image_out = gr.Image(height=512)
# gallery = gr.Gallery(
# label="Generated images", show_label=False, elem_id="gallery"
# ).style(grid=[1], height="auto")
with gr.Column(scale=45):
with gr.Tab("Options"):
with gr.Group():
neg_prompt = gr.Textbox(label="Negative prompt", placeholder="What to exclude from the image")
# n_images = gr.Slider(label="Images", value=1, minimum=1, maximum=4, step=1)
with gr.Row():
guidance = gr.Slider(label="Guidance scale", value=7.5, maximum=15)
steps = gr.Slider(label="Steps", value=50, minimum=2, maximum=100, step=1)
with gr.Row():
width = gr.Slider(label="Width", value=512, minimum=64, maximum=1024, step=8)
height = gr.Slider(label="Height", value=512, minimum=64, maximum=1024, step=8)
seed = gr.Slider(0, 2147483647, label='Seed (0 = random)', value=0, step=1)
with gr.Tab("Image to image"):
with gr.Group():
image = gr.Image(label="Image", height=256, tool="editor", type="pil")
strength = gr.Slider(label="Transformation strength", minimum=0, maximum=1, step=0.01, value=0.5)
model_name.change(lambda x: gr.update(visible = x == models[0].name), inputs=model_name, outputs=custom_model_group)
custom_model_path.change(custom_model_changed, inputs=custom_model_path, outputs=None)
# n_images.change(lambda n: gr.Gallery().style(grid=[2 if n > 1 else 1], height="auto"), inputs=n_images, outputs=gallery)
inputs = [model_name, prompt, guidance, steps, width, height, seed, image, strength, neg_prompt]
prompt.submit(inference, inputs=inputs, outputs=image_out)
generate.click(inference, inputs=inputs, outputs=image_out)
ex = gr.Examples([
[models[1].name, "jason bateman disassembling the demon core", 7.5, 50],
[models[4].name, "portrait of dwayne johnson", 7.0, 75],
[models[5].name, "portrait of a beautiful alyx vance half life", 10, 50],
[models[6].name, "Aloy from Horizon: Zero Dawn, half body portrait, smooth, detailed armor, beautiful face, illustration", 7.0, 45],
[models[5].name, "fantasy portrait painting, digital art", 4.0, 30],
], [model_name, prompt, guidance, steps, seed], image_out, inference, cache_examples=False)
gr.Markdown('''
Models by [@nitrosocke](https://huggingface.co/nitrosocke), [@Helixngc7293](https://twitter.com/DGSpitzer) and others. ❤️<br>
Space by: [![Twitter Follow](https://img.shields.io/twitter/follow/hahahahohohe?label=%40anzorq&style=social)](https://twitter.com/hahahahohohe)
![visitors](https://visitor-badge.glitch.me/badge?page_id=anzorq.finetuned_diffusion)
''')
if not is_colab:
demo.queue(concurrency_count=1)
demo.launch(debug=is_colab, share=is_colab) |