Spaces:
Runtime error
Runtime error
File size: 6,784 Bytes
01f98b3 2c19098 712e3af 2c19098 26063e6 2c19098 76b564d 8131717 6ba7689 01f98b3 76b564d 8131717 6ba7689 01f98b3 76b564d 9458c70 76b564d 26063e6 2c19098 76b564d 01f98b3 712e3af 01f98b3 712e3af 01f98b3 712e3af 01f98b3 76b564d 712e3af 76b564d 01f98b3 4cb8223 2c19098 01f98b3 712e3af 01f98b3 712e3af 01f98b3 712e3af 01b89ba 712e3af 01b89ba 7bd0a5a 712e3af 7bd0a5a 712e3af 01b89ba 01f98b3 7bd0a5a 2c19098 088c386 2c19098 01f98b3 76b564d 6ba7689 01f98b3 2c19098 088c386 2c19098 4cb8223 2c19098 01f98b3 2c19098 01b89ba 633e1e2 40a8b65 01b89ba 40a8b65 2c19098 712e3af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 |
from email import generator
from diffusers import StableDiffusionPipeline
from diffusers import StableDiffusionImg2ImgPipeline
import gradio as gr
import torch
models = [
"nitrosocke/Arcane-Diffusion",
"nitrosocke/archer-diffusion",
"nitrosocke/elden-ring-diffusion",
"nitrosocke/spider-verse-diffusion",
"nitrosocke/modern-disney-diffusion",
"hakurei/waifu-diffusion",
"lambdalabs/sd-pokemon-diffusers",
"yuk/fuyuko-waifu-diffusion",
"AstraliteHeart/pony-diffusion",
"IfanSnek/JohnDiffusion",
"nousr/robo-diffusion",
"DGSpitzer/Cyberpunk-Anime-Diffusion"
]
prompt_prefixes = {
models[0]: "arcane style ",
models[1]: "archer style ",
models[2]: "elden ring style ",
models[3]: "spiderverse style ",
models[4]: "modern disney style ",
models[5]: "",
models[6]: "",
models[7]: "",
models[8]: "",
models[9]: "",
models[10]: "",
models[11]: "dgs illustration style ",
}
current_model = models[0]
pipe = StableDiffusionPipeline.from_pretrained(current_model, torch_dtype=torch.float16)
if torch.cuda.is_available():
pipe = pipe.to("cuda")
device = "GPU 🔥" if torch.cuda.is_available() else "CPU 🥶"
def inference(model, prompt, img, strength, guidance, steps, seed):
generator = torch.manual_seed(seed) if seed != 0 else None
if img is not None:
return img_inference(model, prompt, img, strength, guidance, steps, generator)
else:
return text_inference(model, prompt, guidance, steps, generator)
def text_inference(model, prompt, guidance, steps, generator):
global current_model
global pipe
if model != current_model:
current_model = model
pipe = StableDiffusionPipeline.from_pretrained(current_model, torch_dtype=torch.float16)
if torch.cuda.is_available():
pipe = pipe.to("cuda")
prompt = prompt_prefixes[current_model] + prompt
image = pipe(
prompt,
num_inference_steps=int(steps),
guidance_scale=guidance,
width=512,
height=512,
generator=generator).images[0]
return image
def img_inference(model, prompt, img, strength, guidance, steps, generator):
global current_model
global pipe
if model != current_model:
current_model = model
pipe = StableDiffusionImg2ImgPipeline.from_pretrained(current_model, torch_dtype=torch.float16)
if torch.cuda.is_available():
pipe = pipe.to("cuda")
prompt = prompt_prefixes[current_model] + prompt
img.resize((512, 512))
image = pipe(
prompt,
init_image=img,
num_inference_steps=int(steps),
strength=strength,
guidance_scale=guidance,
width=512,
height=512,
generator=generator).images[0]
return image
css = """
<style>
.finetuned-diffusion-div {
text-align: center;
max-width: 700px;
margin: 0 auto;
}
.finetuned-diffusion-div div {
display: inline-flex;
align-items: center;
gap: 0.8rem;
font-size: 1.75rem;
}
.finetuned-diffusion-div div h1 {
font-weight: 900;
margin-bottom: 7px;
}
.finetuned-diffusion-div p {
margin-bottom: 10px;
font-size: 94%;
}
.finetuned-diffusion-div p a {
text-decoration: underline;
}
</style>
"""
with gr.Blocks(css=css) as demo:
gr.HTML(
"""
<div class="finetuned-diffusion-div">
<div>
<h1>Finetuned Diffusion</h1>
</div>
<p>
Demo for multiple fine-tuned Stable Diffusion models, trained on different styles: <br>
<a href="https://huggingface.co/nitrosocke/Arcane-Diffusion">Arcane</a>, <a href="https://huggingface.co/nitrosocke/archer-diffusion">Archer</a>, <a href="https://huggingface.co/nitrosocke/elden-ring-diffusion">Elden Ring</a>, <a href="https://huggingface.co/nitrosocke/spider-verse-diffusion">Spiderverse</a>, <a href="https://huggingface.co/nitrosocke/modern-disney-diffusion">Modern Disney</a>, <a href="https://huggingface.co/hakurei/waifu-diffusion">Waifu</a>, <a href="https://huggingface.co/lambdalabs/sd-pokemon-diffusers">Pokemon</a>, <a href="https://huggingface.co/yuk/fuyuko-waifu-diffusion">Fuyuko Waifu</a>, <a href="https://huggingface.co/AstraliteHeart/pony-diffusion">Pony</a>, <a href="https://huggingface.co/IfanSnek/JohnDiffusion">John</a>, <a href="https://huggingface.co/nousr/robo-diffusion">Robo</a>, <a href="https://huggingface.co/DGSpitzer/Cyberpunk-Anime-Diffusion">Cyberpunk Anime</a>
</p>
</div>
"""
)
with gr.Row():
with gr.Column():
model = gr.Dropdown(label="Model", choices=models, value=models[0])
prompt = gr.Textbox(label="Prompt", placeholder="Style prefix is applied automatically")
with gr.Accordion("Image to image (optional)", open=False):
image = gr.Image(label="Image", height=256, tool="editor")
strength = gr.Slider(label="Strength", minimum=0, maximum=1, step=0.01, value=0.75)
with gr.Accordion("Advanced options", open=False):
guidance = gr.Slider(label="Guidance scale", value=7.5, maximum=15)
steps = gr.Slider(label="Steps", value=50, maximum=100, minimum=2)
seed = gr.Slider(0, 2147483647, label='Seed (0 = random)', value=0, step=1)
run = gr.Button(value="Run")
gr.Markdown(f"Running on: {device}")
with gr.Column():
image_out = gr.Image(height=512)
prompt.submit(inference, inputs=[model, image, strength, prompt, guidance, steps, seed], outputs=image_out)
run.click(inference, inputs=[model, image, strength, prompt, guidance, steps, seed], outputs=image_out)
gr.Examples([
[models[0], "jason bateman disassembling the demon core", 7.5, 50],
[models[3], "portrait of dwayne johnson", 7.0, 75],
[models[4], "portrait of a beautiful alyx vance half life", 10, 50],
[models[5], "Aloy from Horizon: Zero Dawn, half body portrait, smooth, detailed armor, beautiful face, illustration", 7, 45],
[models[4], "fantasy portrait painting, digital art", 4, 30],
], [model, prompt, guidance, steps, None], image_out, text_inference, cache_examples=torch.cuda.is_available())
gr.HTML('''
<div>
<p>Model by <a href="https://huggingface.co/nitrosocke" target="_blank">@nitrosocke</a> ❤️</p>
</div>
<div>Space by
<a href="https://twitter.com/hahahahohohe">
<img alt="Twitter Follow" src="https://img.shields.io/twitter/follow/hahahahohohe?label=%40anzorq&style=social">
</a>
</div>
''')
demo.queue()
demo.launch(debug=True) |