Spaces:
Running
Running
"""expose an endpoint that accepts image_url and prompt, runs inference with Qwen2.5-VL, and returns a text response""" | |
from fastapi import FastAPI, Query | |
from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor | |
from qwen_vl_utils import process_vision_info | |
import torch | |
app = FastAPI() | |
checkpoint = "Qwen/Qwen2.5-VL-3B-Instruct" | |
min_pixels = 256*28*28 | |
max_pixels = 1280*28*28 | |
processor = AutoProcessor.from_pretrained( | |
checkpoint, | |
min_pixels=min_pixels, | |
max_pixels=max_pixels | |
) | |
model = Qwen2_5_VLForConditionalGeneration.from_pretrained( | |
checkpoint, | |
torch_dtype=torch.bfloat16, | |
device_map="auto", | |
# attn_implementation="flash_attention_2", | |
) | |
def read_root(): | |
return {"message": "API is live. Use the /predict endpoint."} | |
def predict(image_url: str = Query(...), prompt: str = Query(...)): | |
messages = [ | |
{"role": "system", "content": "You are a helpful assistant with vision abilities."}, | |
{"role": "user", "content": [{"type": "image", "image": image_url}, {"type": "text", "text": prompt}]}, | |
] | |
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
image_inputs, video_inputs = process_vision_info(messages) | |
inputs = processor( | |
text=[text], | |
images=image_inputs, | |
videos=video_inputs, | |
padding=True, | |
return_tensors="pt", | |
).to(model.device) | |
with torch.no_grad(): | |
generated_ids = model.generate(**inputs, max_new_tokens=128) | |
generated_ids_trimmed = [out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)] | |
output_texts = processor.batch_decode( | |
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False | |
) | |
return {"response": output_texts[0]} | |