Spaces:
Runtime error
Runtime error
import os | |
from pathlib import Path | |
import numpy as np | |
from tokenizers import Tokenizer | |
import modules.shared as shared | |
from modules.callbacks import Iteratorize | |
np.set_printoptions(precision=4, suppress=True, linewidth=200) | |
os.environ['RWKV_JIT_ON'] = '1' | |
os.environ["RWKV_CUDA_ON"] = '1' if shared.args.rwkv_cuda_on else '0' # use CUDA kernel for seq mode (much faster) | |
from rwkv.model import RWKV | |
from rwkv.utils import PIPELINE, PIPELINE_ARGS | |
class RWKVModel: | |
def __init__(self): | |
pass | |
def from_pretrained(self, path, dtype="fp16", device="cuda"): | |
tokenizer_path = Path(f"{path.parent}/20B_tokenizer.json") | |
if shared.args.rwkv_strategy is None: | |
model = RWKV(model=str(path), strategy=f'{device} {dtype}') | |
else: | |
model = RWKV(model=str(path), strategy=shared.args.rwkv_strategy) | |
pipeline = PIPELINE(model, str(tokenizer_path)) | |
result = self() | |
result.pipeline = pipeline | |
return result | |
def generate(self, context="", token_count=20, temperature=1, top_p=1, top_k=50, alpha_frequency=0.1, alpha_presence=0.1, token_ban=[0], token_stop=[], callback=None): | |
args = PIPELINE_ARGS( | |
temperature = temperature, | |
top_p = top_p, | |
top_k = top_k, | |
alpha_frequency = alpha_frequency, # Frequency Penalty (as in GPT-3) | |
alpha_presence = alpha_presence, # Presence Penalty (as in GPT-3) | |
token_ban = token_ban, # ban the generation of some tokens | |
token_stop = token_stop | |
) | |
return context+self.pipeline.generate(context, token_count=token_count, args=args, callback=callback) | |
def generate_with_streaming(self, **kwargs): | |
with Iteratorize(self.generate, kwargs, callback=None) as generator: | |
reply = kwargs['context'] | |
for token in generator: | |
reply += token | |
yield reply | |
class RWKVTokenizer: | |
def __init__(self): | |
pass | |
def from_pretrained(self, path): | |
tokenizer_path = path / "20B_tokenizer.json" | |
tokenizer = Tokenizer.from_file(str(tokenizer_path)) | |
result = self() | |
result.tokenizer = tokenizer | |
return result | |
def encode(self, prompt): | |
return self.tokenizer.encode(prompt).ids | |
def decode(self, ids): | |
return self.tokenizer.decode(ids) | |