Spaces:
Runtime error
Runtime error
import sys | |
from pathlib import Path | |
import accelerate | |
import torch | |
import modules.shared as shared | |
sys.path.insert(0, str(Path("repositories/GPTQ-for-LLaMa"))) | |
import llama | |
import opt | |
def load_quantized(model_name): | |
if not shared.args.gptq_model_type: | |
# Try to determine model type from model name | |
model_type = model_name.split('-')[0].lower() | |
if model_type not in ('llama', 'opt'): | |
print("Can't determine model type from model name. Please specify it manually using --gptq-model-type " | |
"argument") | |
exit() | |
else: | |
model_type = shared.args.gptq_model_type.lower() | |
if model_type == 'llama': | |
load_quant = llama.load_quant | |
elif model_type == 'opt': | |
load_quant = opt.load_quant | |
else: | |
print("Unknown pre-quantized model type specified. Only 'llama' and 'opt' are supported") | |
exit() | |
path_to_model = Path(f'models/{model_name}') | |
if path_to_model.name.lower().startswith('llama-7b'): | |
pt_model = f'llama-7b-{shared.args.gptq_bits}bit.pt' | |
elif path_to_model.name.lower().startswith('llama-13b'): | |
pt_model = f'llama-13b-{shared.args.gptq_bits}bit.pt' | |
elif path_to_model.name.lower().startswith('llama-30b'): | |
pt_model = f'llama-30b-{shared.args.gptq_bits}bit.pt' | |
elif path_to_model.name.lower().startswith('llama-65b'): | |
pt_model = f'llama-65b-{shared.args.gptq_bits}bit.pt' | |
else: | |
pt_model = f'{model_name}-{shared.args.gptq_bits}bit.pt' | |
# Try to find the .pt both in models/ and in the subfolder | |
pt_path = None | |
for path in [Path(p) for p in [f"models/{pt_model}", f"{path_to_model}/{pt_model}"]]: | |
if path.exists(): | |
pt_path = path | |
if not pt_path: | |
print(f"Could not find {pt_model}, exiting...") | |
exit() | |
model = load_quant(str(path_to_model), str(pt_path), shared.args.gptq_bits) | |
# Multiple GPUs or GPU+CPU | |
if shared.args.gpu_memory: | |
max_memory = {} | |
for i in range(len(shared.args.gpu_memory)): | |
max_memory[i] = f"{shared.args.gpu_memory[i]}GiB" | |
max_memory['cpu'] = f"{shared.args.cpu_memory or '99'}GiB" | |
device_map = accelerate.infer_auto_device_map(model, max_memory=max_memory, no_split_module_classes=["LLaMADecoderLayer"]) | |
model = accelerate.dispatch_model(model, device_map=device_map) | |
# Single GPU | |
else: | |
model = model.to(torch.device('cuda:0')) | |
return model | |