anshupatel4298 commited on
Commit
66f3bf7
·
verified ·
1 Parent(s): 2b4542a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +18 -3
app.py CHANGED
@@ -13,14 +13,28 @@ basic_model_url = "https://huggingface.co/anshupatel4298/bert-chatbot-model/reso
13
  local_model_path = "basic_chatbot_model.h5"
14
  bert_model_name = "anshupatel4298/bert-chatbot-model/bert_model"
15
 
16
- # Download the Basic Model from the URL
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17
  if not os.path.exists(local_model_path):
18
  response = requests.get(basic_model_url)
19
  with open(local_model_path, 'wb') as f:
20
  f.write(response.content)
21
 
22
- # Load Basic Model from the local file
23
- basic_model = tf.keras.models.load_model(local_model_path)
24
 
25
  # Load BERT Model and Tokenizer
26
  bert_model = TFBertForSequenceClassification.from_pretrained(bert_model_name)
@@ -51,3 +65,4 @@ if st.button("Send"):
51
  response = tf.argmax(outputs.logits, axis=-1).numpy()[0]
52
 
53
  st.write(f"Bot: {response}")
 
 
13
  local_model_path = "basic_chatbot_model.h5"
14
  bert_model_name = "anshupatel4298/bert-chatbot-model/bert_model"
15
 
16
+ # Define the model architecture
17
+ def create_model():
18
+ model = tf.keras.Sequential([
19
+ tf.keras.layers.Dense(128, activation='relu', input_shape=(100,)), # Adjust input shape accordingly
20
+ tf.keras.layers.Dropout(0.5),
21
+ tf.keras.layers.Dense(64, activation='relu'),
22
+ tf.keras.layers.Dropout(0.5),
23
+ tf.keras.layers.Dense(10, activation='softmax') # Adjust the number of classes accordingly
24
+ ])
25
+ return model
26
+
27
+ # Create the model
28
+ basic_model = create_model()
29
+
30
+ # Download the Basic Model weights from the URL if not already downloaded
31
  if not os.path.exists(local_model_path):
32
  response = requests.get(basic_model_url)
33
  with open(local_model_path, 'wb') as f:
34
  f.write(response.content)
35
 
36
+ # Load the weights into the model
37
+ basic_model.load_weights(local_model_path)
38
 
39
  # Load BERT Model and Tokenizer
40
  bert_model = TFBertForSequenceClassification.from_pretrained(bert_model_name)
 
65
  response = tf.argmax(outputs.logits, axis=-1).numpy()[0]
66
 
67
  st.write(f"Bot: {response}")
68
+