Spaces:
Running
Running
"""Fake LLM wrapper for testing purposes.""" | |
from typing import Any, Dict, List, Mapping, Optional, cast | |
from langchain_core.callbacks.manager import CallbackManagerForLLMRun | |
from langchain_core.language_models import LLM | |
from langchain_experimental.pydantic_v1 import validator | |
class FakeLLM(LLM): | |
"""Fake LLM wrapper for testing purposes.""" | |
queries: Optional[Mapping] = None | |
sequential_responses: Optional[bool] = False | |
response_index: int = 0 | |
def check_queries_required( | |
cls, queries: Optional[Mapping], values: Mapping[str, Any] | |
) -> Optional[Mapping]: | |
if values.get("sequential_response") and not queries: | |
raise ValueError( | |
"queries is required when sequential_response is set to True" | |
) | |
return queries | |
def get_num_tokens(self, text: str) -> int: | |
"""Return number of tokens.""" | |
return len(text.split()) | |
def _llm_type(self) -> str: | |
"""Return type of llm.""" | |
return "fake" | |
def _call( | |
self, | |
prompt: str, | |
stop: Optional[List[str]] = None, | |
run_manager: Optional[CallbackManagerForLLMRun] = None, | |
**kwargs: Any, | |
) -> str: | |
if self.sequential_responses: | |
return self._get_next_response_in_sequence | |
if self.queries is not None: | |
return self.queries[prompt] | |
if stop is None: | |
return "foo" | |
else: | |
return "bar" | |
def _identifying_params(self) -> Dict[str, Any]: | |
return {} | |
def _get_next_response_in_sequence(self) -> str: | |
queries = cast(Mapping, self.queries) | |
response = queries[list(queries.keys())[self.response_index]] | |
self.response_index = self.response_index + 1 | |
return response | |