Spaces:
Runtime error
Runtime error
"""Wrapper around Konko AI's Completion API.""" | |
import logging | |
import warnings | |
from typing import Any, Dict, List, Optional | |
from langchain_core.callbacks import ( | |
AsyncCallbackManagerForLLMRun, | |
CallbackManagerForLLMRun, | |
) | |
from langchain_core.language_models.llms import LLM | |
from langchain_core.pydantic_v1 import Extra, SecretStr, root_validator | |
from langchain_community.utils.openai import is_openai_v1 | |
logger = logging.getLogger(__name__) | |
class Konko(LLM): | |
"""Konko AI models. | |
To use, you'll need an API key. This can be passed in as init param | |
``konko_api_key`` or set as environment variable ``KONKO_API_KEY``. | |
Konko AI API reference: https://docs.konko.ai/reference/ | |
""" | |
base_url: str = "https://api.konko.ai/v1/completions" | |
"""Base inference API URL.""" | |
konko_api_key: SecretStr | |
"""Konko AI API key.""" | |
model: str | |
"""Model name. Available models listed here: | |
https://docs.konko.ai/reference/get_models | |
""" | |
temperature: Optional[float] = None | |
"""Model temperature.""" | |
top_p: Optional[float] = None | |
"""Used to dynamically adjust the number of choices for each predicted token based | |
on the cumulative probabilities. A value of 1 will always yield the same | |
output. A temperature less than 1 favors more correctness and is appropriate | |
for question answering or summarization. A value greater than 1 introduces more | |
randomness in the output. | |
""" | |
top_k: Optional[int] = None | |
"""Used to limit the number of choices for the next predicted word or token. It | |
specifies the maximum number of tokens to consider at each step, based on their | |
probability of occurrence. This technique helps to speed up the generation | |
process and can improve the quality of the generated text by focusing on the | |
most likely options. | |
""" | |
max_tokens: Optional[int] = None | |
"""The maximum number of tokens to generate.""" | |
repetition_penalty: Optional[float] = None | |
"""A number that controls the diversity of generated text by reducing the | |
likelihood of repeated sequences. Higher values decrease repetition. | |
""" | |
logprobs: Optional[int] = None | |
"""An integer that specifies how many top token log probabilities are included in | |
the response for each token generation step. | |
""" | |
class Config: | |
"""Configuration for this pydantic object.""" | |
extra = Extra.forbid | |
def validate_environment(cls, values: Dict[str, Any]) -> Dict[str, Any]: | |
"""Validate that python package exists in environment.""" | |
try: | |
import konko | |
except ImportError: | |
raise ImportError( | |
"Could not import konko python package. " | |
"Please install it with `pip install konko`." | |
) | |
if not hasattr(konko, "_is_legacy_openai"): | |
warnings.warn( | |
"You are using an older version of the 'konko' package. " | |
"Please consider upgrading to access new features" | |
"including the completion endpoint." | |
) | |
return values | |
def construct_payload( | |
self, | |
prompt: str, | |
stop: Optional[List[str]] = None, | |
**kwargs: Any, | |
) -> Dict[str, Any]: | |
stop_to_use = stop[0] if stop and len(stop) == 1 else stop | |
payload: Dict[str, Any] = { | |
**self.default_params, | |
"prompt": prompt, | |
"stop": stop_to_use, | |
**kwargs, | |
} | |
return {k: v for k, v in payload.items() if v is not None} | |
def _llm_type(self) -> str: | |
"""Return type of model.""" | |
return "konko" | |
def get_user_agent() -> str: | |
from langchain_community import __version__ | |
return f"langchain/{__version__}" | |
def default_params(self) -> Dict[str, Any]: | |
return { | |
"model": self.model, | |
"temperature": self.temperature, | |
"top_p": self.top_p, | |
"top_k": self.top_k, | |
"max_tokens": self.max_tokens, | |
"repetition_penalty": self.repetition_penalty, | |
} | |
def _call( | |
self, | |
prompt: str, | |
stop: Optional[List[str]] = None, | |
run_manager: Optional[CallbackManagerForLLMRun] = None, | |
**kwargs: Any, | |
) -> str: | |
"""Call out to Konko's text generation endpoint. | |
Args: | |
prompt: The prompt to pass into the model. | |
Returns: | |
The string generated by the model.. | |
""" | |
import konko | |
payload = self.construct_payload(prompt, stop, **kwargs) | |
try: | |
if is_openai_v1(): | |
response = konko.completions.create(**payload) | |
else: | |
response = konko.Completion.create(**payload) | |
except AttributeError: | |
raise ValueError( | |
"`konko` has no `Completion` attribute, this is likely " | |
"due to an old version of the konko package. Try upgrading it " | |
"with `pip install --upgrade konko`." | |
) | |
if is_openai_v1(): | |
output = response.choices[0].text | |
else: | |
output = response["choices"][0]["text"] | |
return output | |
async def _acall( | |
self, | |
prompt: str, | |
stop: Optional[List[str]] = None, | |
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, | |
**kwargs: Any, | |
) -> str: | |
"""Asynchronously call out to Konko's text generation endpoint. | |
Args: | |
prompt: The prompt to pass into the model. | |
Returns: | |
The string generated by the model. | |
""" | |
import konko | |
payload = self.construct_payload(prompt, stop, **kwargs) | |
try: | |
if is_openai_v1(): | |
client = konko.AsyncKonko() | |
response = await client.completions.create(**payload) | |
else: | |
response = await konko.Completion.acreate(**payload) | |
except AttributeError: | |
raise ValueError( | |
"`konko` has no `Completion` attribute, this is likely " | |
"due to an old version of the konko package. Try upgrading it " | |
"with `pip install --upgrade konko`." | |
) | |
if is_openai_v1(): | |
output = response.choices[0].text | |
else: | |
output = response["choices"][0]["text"] | |
return output | |