Spaces:
Runtime error
Runtime error
from typing import Any, Callable, List, Mapping, Optional | |
from langchain_core.callbacks import CallbackManagerForLLMRun | |
from langchain_core.language_models.llms import LLM | |
from langchain_core.pydantic_v1 import Field | |
from langchain_community.llms.utils import enforce_stop_tokens | |
def _display_prompt(prompt: str) -> None: | |
"""Displays the given prompt to the user.""" | |
print(f"\n{prompt}") # noqa: T201 | |
def _collect_user_input( | |
separator: Optional[str] = None, stop: Optional[List[str]] = None | |
) -> str: | |
"""Collects and returns user input as a single string.""" | |
separator = separator or "\n" | |
lines = [] | |
while True: | |
line = input() | |
if not line: | |
break | |
lines.append(line) | |
if stop and any(seq in line for seq in stop): | |
break | |
# Combine all lines into a single string | |
multi_line_input = separator.join(lines) | |
return multi_line_input | |
class HumanInputLLM(LLM): | |
"""User input as the response.""" | |
input_func: Callable = Field(default_factory=lambda: _collect_user_input) | |
prompt_func: Callable[[str], None] = Field(default_factory=lambda: _display_prompt) | |
separator: str = "\n" | |
input_kwargs: Mapping[str, Any] = {} | |
prompt_kwargs: Mapping[str, Any] = {} | |
def _identifying_params(self) -> Mapping[str, Any]: | |
""" | |
Returns an empty dictionary as there are no identifying parameters. | |
""" | |
return {} | |
def _llm_type(self) -> str: | |
"""Returns the type of LLM.""" | |
return "human-input" | |
def _call( | |
self, | |
prompt: str, | |
stop: Optional[List[str]] = None, | |
run_manager: Optional[CallbackManagerForLLMRun] = None, | |
**kwargs: Any, | |
) -> str: | |
""" | |
Displays the prompt to the user and returns their input as a response. | |
Args: | |
prompt (str): The prompt to be displayed to the user. | |
stop (Optional[List[str]]): A list of stop strings. | |
run_manager (Optional[CallbackManagerForLLMRun]): Currently not used. | |
Returns: | |
str: The user's input as a response. | |
""" | |
self.prompt_func(prompt, **self.prompt_kwargs) | |
user_input = self.input_func( | |
separator=self.separator, stop=stop, **self.input_kwargs | |
) | |
if stop is not None: | |
# I believe this is required since the stop tokens | |
# are not enforced by the human themselves | |
user_input = enforce_stop_tokens(user_input, stop) | |
return user_input | |