Spaces:
Runtime error
Runtime error
import logging | |
from typing import Any, Dict, List, Mapping, Optional, cast | |
from langchain_core.callbacks import CallbackManagerForLLMRun | |
from langchain_core.language_models.llms import LLM | |
from langchain_core.pydantic_v1 import Extra, Field, SecretStr, root_validator | |
from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env | |
from langchain_community.llms.utils import enforce_stop_tokens | |
logger = logging.getLogger(__name__) | |
class Banana(LLM): | |
"""Banana large language models. | |
To use, you should have the ``banana-dev`` python package installed, | |
and the environment variable ``BANANA_API_KEY`` set with your API key. | |
This is the team API key available in the Banana dashboard. | |
Any parameters that are valid to be passed to the call can be passed | |
in, even if not explicitly saved on this class. | |
Example: | |
.. code-block:: python | |
from langchain_community.llms import Banana | |
banana = Banana(model_key="", model_url_slug="") | |
""" | |
model_key: str = "" | |
"""model key to use""" | |
model_url_slug: str = "" | |
"""model endpoint to use""" | |
model_kwargs: Dict[str, Any] = Field(default_factory=dict) | |
"""Holds any model parameters valid for `create` call not | |
explicitly specified.""" | |
banana_api_key: Optional[SecretStr] = None | |
class Config: | |
"""Configuration for this pydantic config.""" | |
extra = Extra.forbid | |
def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]: | |
"""Build extra kwargs from additional params that were passed in.""" | |
all_required_field_names = {field.alias for field in cls.__fields__.values()} | |
extra = values.get("model_kwargs", {}) | |
for field_name in list(values): | |
if field_name not in all_required_field_names: | |
if field_name in extra: | |
raise ValueError(f"Found {field_name} supplied twice.") | |
logger.warning( | |
f"""{field_name} was transferred to model_kwargs. | |
Please confirm that {field_name} is what you intended.""" | |
) | |
extra[field_name] = values.pop(field_name) | |
values["model_kwargs"] = extra | |
return values | |
def validate_environment(cls, values: Dict) -> Dict: | |
"""Validate that api key and python package exists in environment.""" | |
banana_api_key = convert_to_secret_str( | |
get_from_dict_or_env(values, "banana_api_key", "BANANA_API_KEY") | |
) | |
values["banana_api_key"] = banana_api_key | |
return values | |
def _identifying_params(self) -> Mapping[str, Any]: | |
"""Get the identifying parameters.""" | |
return { | |
**{"model_key": self.model_key}, | |
**{"model_url_slug": self.model_url_slug}, | |
**{"model_kwargs": self.model_kwargs}, | |
} | |
def _llm_type(self) -> str: | |
"""Return type of llm.""" | |
return "bananadev" | |
def _call( | |
self, | |
prompt: str, | |
stop: Optional[List[str]] = None, | |
run_manager: Optional[CallbackManagerForLLMRun] = None, | |
**kwargs: Any, | |
) -> str: | |
"""Call to Banana endpoint.""" | |
try: | |
from banana_dev import Client | |
except ImportError: | |
raise ImportError( | |
"Could not import banana-dev python package. " | |
"Please install it with `pip install banana-dev`." | |
) | |
params = self.model_kwargs or {} | |
params = {**params, **kwargs} | |
api_key = cast(SecretStr, self.banana_api_key) | |
model_key = self.model_key | |
model_url_slug = self.model_url_slug | |
model_inputs = { | |
# a json specific to your model. | |
"prompt": prompt, | |
**params, | |
} | |
model = Client( | |
# Found in main dashboard | |
api_key=api_key.get_secret_value(), | |
# Both found in model details page | |
model_key=model_key, | |
url=f"https://{model_url_slug}.run.banana.dev", | |
) | |
response, meta = model.call("/", model_inputs) | |
try: | |
text = response["outputs"] | |
except (KeyError, TypeError): | |
raise ValueError( | |
"Response should be of schema: {'outputs': 'text'}." | |
"\nTo fix this:" | |
"\n- fork the source repo of the Banana model" | |
"\n- modify app.py to return the above schema" | |
"\n- deploy that as a custom repo" | |
) | |
if stop is not None: | |
# I believe this is required since the stop tokens | |
# are not enforced by the model parameters | |
text = enforce_stop_tokens(text, stop) | |
return text | |