Spaces:
Runtime error
Runtime error
import logging | |
from string import Template | |
from typing import Any, Dict, Optional | |
logger = logging.getLogger(__name__) | |
rel_query = Template( | |
""" | |
MATCH ()-[e:`$edge_type`]->() | |
WITH e limit 1 | |
MATCH (m)-[:`$edge_type`]->(n) WHERE id(m) == src(e) AND id(n) == dst(e) | |
RETURN "(:" + tags(m)[0] + ")-[:$edge_type]->(:" + tags(n)[0] + ")" AS rels | |
""" | |
) | |
RETRY_TIMES = 3 | |
class NebulaGraph: | |
"""NebulaGraph wrapper for graph operations. | |
NebulaGraph inherits methods from Neo4jGraph to bring ease to the user space. | |
*Security note*: Make sure that the database connection uses credentials | |
that are narrowly-scoped to only include necessary permissions. | |
Failure to do so may result in data corruption or loss, since the calling | |
code may attempt commands that would result in deletion, mutation | |
of data if appropriately prompted or reading sensitive data if such | |
data is present in the database. | |
The best way to guard against such negative outcomes is to (as appropriate) | |
limit the permissions granted to the credentials used with this tool. | |
See https://python.langchain.com/docs/security for more information. | |
""" | |
def __init__( | |
self, | |
space: str, | |
username: str = "root", | |
password: str = "nebula", | |
address: str = "127.0.0.1", | |
port: int = 9669, | |
session_pool_size: int = 30, | |
) -> None: | |
"""Create a new NebulaGraph wrapper instance.""" | |
try: | |
import nebula3 # noqa: F401 | |
import pandas # noqa: F401 | |
except ImportError: | |
raise ImportError( | |
"Please install NebulaGraph Python client and pandas first: " | |
"`pip install nebula3-python pandas`" | |
) | |
self.username = username | |
self.password = password | |
self.address = address | |
self.port = port | |
self.space = space | |
self.session_pool_size = session_pool_size | |
self.session_pool = self._get_session_pool() | |
self.schema = "" | |
# Set schema | |
try: | |
self.refresh_schema() | |
except Exception as e: | |
raise ValueError(f"Could not refresh schema. Error: {e}") | |
def _get_session_pool(self) -> Any: | |
assert all( | |
[self.username, self.password, self.address, self.port, self.space] | |
), ( | |
"Please provide all of the following parameters: " | |
"username, password, address, port, space" | |
) | |
from nebula3.Config import SessionPoolConfig | |
from nebula3.Exception import AuthFailedException, InValidHostname | |
from nebula3.gclient.net.SessionPool import SessionPool | |
config = SessionPoolConfig() | |
config.max_size = self.session_pool_size | |
try: | |
session_pool = SessionPool( | |
self.username, | |
self.password, | |
self.space, | |
[(self.address, self.port)], | |
) | |
except InValidHostname: | |
raise ValueError( | |
"Could not connect to NebulaGraph database. " | |
"Please ensure that the address and port are correct" | |
) | |
try: | |
session_pool.init(config) | |
except AuthFailedException: | |
raise ValueError( | |
"Could not connect to NebulaGraph database. " | |
"Please ensure that the username and password are correct" | |
) | |
except RuntimeError as e: | |
raise ValueError(f"Error initializing session pool. Error: {e}") | |
return session_pool | |
def __del__(self) -> None: | |
try: | |
self.session_pool.close() | |
except Exception as e: | |
logger.warning(f"Could not close session pool. Error: {e}") | |
def get_schema(self) -> str: | |
"""Returns the schema of the NebulaGraph database""" | |
return self.schema | |
def execute(self, query: str, params: Optional[dict] = None, retry: int = 0) -> Any: | |
"""Query NebulaGraph database.""" | |
from nebula3.Exception import IOErrorException, NoValidSessionException | |
from nebula3.fbthrift.transport.TTransport import TTransportException | |
params = params or {} | |
try: | |
result = self.session_pool.execute_parameter(query, params) | |
if not result.is_succeeded(): | |
logger.warning( | |
f"Error executing query to NebulaGraph. " | |
f"Error: {result.error_msg()}\n" | |
f"Query: {query} \n" | |
) | |
return result | |
except NoValidSessionException: | |
logger.warning( | |
f"No valid session found in session pool. " | |
f"Please consider increasing the session pool size. " | |
f"Current size: {self.session_pool_size}" | |
) | |
raise ValueError( | |
f"No valid session found in session pool. " | |
f"Please consider increasing the session pool size. " | |
f"Current size: {self.session_pool_size}" | |
) | |
except RuntimeError as e: | |
if retry < RETRY_TIMES: | |
retry += 1 | |
logger.warning( | |
f"Error executing query to NebulaGraph. " | |
f"Retrying ({retry}/{RETRY_TIMES})...\n" | |
f"query: {query} \n" | |
f"Error: {e}" | |
) | |
return self.execute(query, params, retry) | |
else: | |
raise ValueError(f"Error executing query to NebulaGraph. Error: {e}") | |
except (TTransportException, IOErrorException): | |
# connection issue, try to recreate session pool | |
if retry < RETRY_TIMES: | |
retry += 1 | |
logger.warning( | |
f"Connection issue with NebulaGraph. " | |
f"Retrying ({retry}/{RETRY_TIMES})...\n to recreate session pool" | |
) | |
self.session_pool = self._get_session_pool() | |
return self.execute(query, params, retry) | |
def refresh_schema(self) -> None: | |
""" | |
Refreshes the NebulaGraph schema information. | |
""" | |
tags_schema, edge_types_schema, relationships = [], [], [] | |
for tag in self.execute("SHOW TAGS").column_values("Name"): | |
tag_name = tag.cast() | |
tag_schema = {"tag": tag_name, "properties": []} | |
r = self.execute(f"DESCRIBE TAG `{tag_name}`") | |
props, types = r.column_values("Field"), r.column_values("Type") | |
for i in range(r.row_size()): | |
tag_schema["properties"].append((props[i].cast(), types[i].cast())) | |
tags_schema.append(tag_schema) | |
for edge_type in self.execute("SHOW EDGES").column_values("Name"): | |
edge_type_name = edge_type.cast() | |
edge_schema = {"edge": edge_type_name, "properties": []} | |
r = self.execute(f"DESCRIBE EDGE `{edge_type_name}`") | |
props, types = r.column_values("Field"), r.column_values("Type") | |
for i in range(r.row_size()): | |
edge_schema["properties"].append((props[i].cast(), types[i].cast())) | |
edge_types_schema.append(edge_schema) | |
# build relationships types | |
r = self.execute( | |
rel_query.substitute(edge_type=edge_type_name) | |
).column_values("rels") | |
if len(r) > 0: | |
relationships.append(r[0].cast()) | |
self.schema = ( | |
f"Node properties: {tags_schema}\n" | |
f"Edge properties: {edge_types_schema}\n" | |
f"Relationships: {relationships}\n" | |
) | |
def query(self, query: str, retry: int = 0) -> Dict[str, Any]: | |
result = self.execute(query, retry=retry) | |
columns = result.keys() | |
d: Dict[str, list] = {} | |
for col_num in range(result.col_size()): | |
col_name = columns[col_num] | |
col_list = result.column_values(col_name) | |
d[col_name] = [x.cast() for x in col_list] | |
return d | |