Spaces:
Runtime error
Runtime error
from typing import Any, Dict, List, Optional | |
import requests | |
from langchain_core.embeddings import Embeddings | |
from langchain_core.pydantic_v1 import BaseModel, SecretStr, root_validator | |
from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env | |
from requests import RequestException | |
BAICHUAN_API_URL: str = "http://api.baichuan-ai.com/v1/embeddings" | |
# BaichuanTextEmbeddings is an embedding model provided by Baichuan Inc. (https://www.baichuan-ai.com/home). | |
# As of today (Jan 25th, 2024) BaichuanTextEmbeddings ranks #1 in C-MTEB | |
# (Chinese Multi-Task Embedding Benchmark) leaderboard. | |
# Leaderboard (Under Overall -> Chinese section): https://huggingface.co/spaces/mteb/leaderboard | |
# Official Website: https://platform.baichuan-ai.com/docs/text-Embedding | |
# An API-key is required to use this embedding model. You can get one by registering | |
# at https://platform.baichuan-ai.com/docs/text-Embedding. | |
# BaichuanTextEmbeddings support 512 token window and preduces vectors with | |
# 1024 dimensions. | |
# NOTE!! BaichuanTextEmbeddings only supports Chinese text embedding. | |
# Multi-language support is coming soon. | |
class BaichuanTextEmbeddings(BaseModel, Embeddings): | |
"""Baichuan Text Embedding models. | |
To use, you should set the environment variable ``BAICHUAN_API_KEY`` to | |
your API key or pass it as a named parameter to the constructor. | |
Example: | |
.. code-block:: python | |
from langchain_community.embeddings import BaichuanTextEmbeddings | |
baichuan = BaichuanTextEmbeddings(baichuan_api_key="my-api-key") | |
""" | |
session: Any #: :meta private: | |
model_name: str = "Baichuan-Text-Embedding" | |
baichuan_api_key: Optional[SecretStr] = None | |
"""Automatically inferred from env var `BAICHUAN_API_KEY` if not provided.""" | |
def validate_environment(cls, values: Dict) -> Dict: | |
"""Validate that auth token exists in environment.""" | |
try: | |
baichuan_api_key = convert_to_secret_str( | |
get_from_dict_or_env(values, "baichuan_api_key", "BAICHUAN_API_KEY") | |
) | |
except ValueError as original_exc: | |
try: | |
baichuan_api_key = convert_to_secret_str( | |
get_from_dict_or_env( | |
values, "baichuan_auth_token", "BAICHUAN_AUTH_TOKEN" | |
) | |
) | |
except ValueError: | |
raise original_exc | |
session = requests.Session() | |
session.headers.update( | |
{ | |
"Authorization": f"Bearer {baichuan_api_key.get_secret_value()}", | |
"Accept-Encoding": "identity", | |
"Content-type": "application/json", | |
} | |
) | |
values["session"] = session | |
return values | |
def _embed(self, texts: List[str]) -> Optional[List[List[float]]]: | |
"""Internal method to call Baichuan Embedding API and return embeddings. | |
Args: | |
texts: A list of texts to embed. | |
Returns: | |
A list of list of floats representing the embeddings, or None if an | |
error occurs. | |
""" | |
response = self.session.post( | |
BAICHUAN_API_URL, json={"input": texts, "model": self.model_name} | |
) | |
# Raise exception if response status code from 400 to 600 | |
response.raise_for_status() | |
# Check if the response status code indicates success | |
if response.status_code == 200: | |
resp = response.json() | |
embeddings = resp.get("data", []) | |
# Sort resulting embeddings by index | |
sorted_embeddings = sorted(embeddings, key=lambda e: e.get("index", 0)) | |
# Return just the embeddings | |
return [result.get("embedding", []) for result in sorted_embeddings] | |
else: | |
# Log error or handle unsuccessful response appropriately | |
# Handle 100 <= status_code < 400, not include 200 | |
raise RequestException( | |
f"Error: Received status code {response.status_code} from " | |
"`BaichuanEmbedding` API" | |
) | |
def embed_documents(self, texts: List[str]) -> Optional[List[List[float]]]: # type: ignore[override] | |
"""Public method to get embeddings for a list of documents. | |
Args: | |
texts: The list of texts to embed. | |
Returns: | |
A list of embeddings, one for each text, or None if an error occurs. | |
""" | |
return self._embed(texts) | |
def embed_query(self, text: str) -> Optional[List[float]]: # type: ignore[override] | |
"""Public method to get embedding for a single query text. | |
Args: | |
text: The text to embed. | |
Returns: | |
Embeddings for the text, or None if an error occurs. | |
""" | |
result = self._embed([text]) | |
return result[0] if result is not None else None | |