Spaces:
Runtime error
Runtime error
"""Anyscale embeddings wrapper.""" | |
from __future__ import annotations | |
from typing import Dict | |
from langchain_core.pydantic_v1 import Field, SecretStr, root_validator | |
from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env | |
from langchain_community.embeddings.openai import OpenAIEmbeddings | |
from langchain_community.utils.openai import is_openai_v1 | |
DEFAULT_API_BASE = "https://api.endpoints.anyscale.com/v1" | |
DEFAULT_MODEL = "thenlper/gte-large" | |
class AnyscaleEmbeddings(OpenAIEmbeddings): | |
"""`Anyscale` Embeddings API.""" | |
anyscale_api_key: SecretStr = Field(default=None) | |
"""AnyScale Endpoints API keys.""" | |
model: str = Field(default=DEFAULT_MODEL) | |
"""Model name to use.""" | |
anyscale_api_base: str = Field(default=DEFAULT_API_BASE) | |
"""Base URL path for API requests.""" | |
tiktoken_enabled: bool = False | |
"""Set this to False for non-OpenAI implementations of the embeddings API""" | |
embedding_ctx_length: int = 500 | |
"""The maximum number of tokens to embed at once.""" | |
def lc_secrets(self) -> Dict[str, str]: | |
return { | |
"anyscale_api_key": "ANYSCALE_API_KEY", | |
} | |
def validate_environment(cls, values: dict) -> dict: | |
"""Validate that api key and python package exists in environment.""" | |
values["anyscale_api_key"] = convert_to_secret_str( | |
get_from_dict_or_env( | |
values, | |
"anyscale_api_key", | |
"ANYSCALE_API_KEY", | |
) | |
) | |
values["anyscale_api_base"] = get_from_dict_or_env( | |
values, | |
"anyscale_api_base", | |
"ANYSCALE_API_BASE", | |
default=DEFAULT_API_BASE, | |
) | |
try: | |
import openai | |
except ImportError: | |
raise ImportError( | |
"Could not import openai python package. " | |
"Please install it with `pip install openai`." | |
) | |
if is_openai_v1(): | |
# For backwards compatibility. | |
client_params = { | |
"api_key": values["anyscale_api_key"].get_secret_value(), | |
"base_url": values["anyscale_api_base"], | |
} | |
values["client"] = openai.OpenAI(**client_params).embeddings | |
else: | |
values["openai_api_base"] = values["anyscale_api_base"] | |
values["openai_api_key"] = values["anyscale_api_key"].get_secret_value() | |
values["client"] = openai.Embedding | |
return values | |
def _llm_type(self) -> str: | |
return "anyscale-embedding" | |